論文の概要: Counterfactual Fairness through Transforming Data Orthogonal to Bias
- arxiv url: http://arxiv.org/abs/2403.17852v2
- Date: Sun, 30 Jun 2024 01:51:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-02 14:39:26.714561
- Title: Counterfactual Fairness through Transforming Data Orthogonal to Bias
- Title(参考訳): データ直交からバイアスへの変換による対物フェアネス
- Authors: Shuyi Chen, Shixiang Zhu,
- Abstract要約: 我々は新しいデータ前処理アルゴリズムOrthogonal to Bias (OB)を提案する。
OBは、連続的な敏感な変数群の影響を排除し、機械学習アプリケーションにおける反ファクトフェアネスを促進するように設計されている。
OBはモデルに依存しないため、幅広い機械学習モデルやタスクに適用できる。
- 参考スコア(独自算出の注目度): 7.109458605736819
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning models have shown exceptional prowess in solving complex issues across various domains. However, these models can sometimes exhibit biased decision-making, resulting in unequal treatment of different groups. Despite substantial research on counterfactual fairness, methods to reduce the impact of multivariate and continuous sensitive variables on decision-making outcomes are still underdeveloped. We propose a novel data pre-processing algorithm, Orthogonal to Bias (OB), which is designed to eliminate the influence of a group of continuous sensitive variables, thus promoting counterfactual fairness in machine learning applications. Our approach, based on the assumption of a jointly normal distribution within a structural causal model (SCM), demonstrates that counterfactual fairness can be achieved by ensuring the data is orthogonal to the observed sensitive variables. The OB algorithm is model-agnostic, making it applicable to a wide range of machine learning models and tasks. Additionally, it includes a sparse variant to improve numerical stability through regularization. Empirical evaluations on both simulated and real-world datasets, encompassing settings with both discrete and continuous sensitive variables, show that our methodology effectively promotes fairer outcomes without compromising accuracy.
- Abstract(参考訳): 機械学習モデルは、さまざまな領域にまたがる複雑な問題を解決するのに、非常に優れた技術を示している。
しかし、これらのモデルは時に偏りのある意思決定を示し、異なるグループの不平等な扱いをもたらすことがある。
反ファクトフェアネスに関するかなりの研究にもかかわらず、多変量変数と連続感度変数が意思決定結果に与える影響を減らす方法はまだ未開発である。
本稿では,連続的な変数群の影響を排除し,機械学習アプリケーションにおける非現実的公正性を促進するために,新しいデータ前処理アルゴリズムOrthogonal to Bias(OB)を提案する。
本手法は,構造因果モデル (SCM) 内の連立正規分布の仮定に基づいて,観測された感度変数の直交性を保証することにより,対実的公正性を実現することができることを示す。
OBアルゴリズムはモデルに依存しないため、幅広い機械学習モデルやタスクに適用できる。
さらに、正規化による数値安定性を改善するためのスパース変種を含んでいる。
シミュレーションと実世界の両方のデータセットに対する実験的な評価は、個別変数と連続変数の両方で設定を包含することで、精度を損なうことなく、より公平な結果を効果的に促進することを示す。
関連論文リスト
- Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
本研究では,相互依存データに対する問題に対して,学習可能な分散場を持つ幾何学的拡散モデルを提案する。
因果推論によって新たな学習目標が導出され、ドメイン間で無神経な相互依存の一般化可能なパターンを学習するためのモデルが導出される。
論文 参考訳(メタデータ) (2024-06-07T14:29:21Z) - Enhancing Fairness in Neural Networks Using FairVIC [0.0]
自動意思決定システム、特にディープラーニングモデルにおけるバイアスの緩和は、公平性を達成する上で重要な課題である。
FairVICは、トレーニング段階で固有のバイアスに対処することによって、ニューラルネットワークの公平性を高めるために設計された革新的なアプローチである。
我々は、モデルの精度を有害な程度に向上させることなく、テスト対象のすべての指標の公平性を大幅に改善する。
論文 参考訳(メタデータ) (2024-04-28T10:10:21Z) - Towards Understanding Variants of Invariant Risk Minimization through the Lens of Calibration [0.6906005491572401]
本稿では,Information BottleneckをベースとしたITMが,異なる環境における一貫したキャリブレーションを実現することを示す。
私たちの経験的証拠は、環境全体にわたって一貫した校正を示すモデルも十分に校正されていることを示している。
論文 参考訳(メタデータ) (2024-01-31T02:08:43Z) - Towards stable real-world equation discovery with assessing
differentiating quality influence [52.2980614912553]
一般的に用いられる有限差分法に代わる方法を提案する。
我々は,これらの手法を実問題と類似した問題に適用可能であること,および方程式発見アルゴリズムの収束性を確保する能力の観点から評価する。
論文 参考訳(メタデータ) (2023-11-09T23:32:06Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
不均衡データセットは、様々な現実世界のアプリケーションで一般的に見られ、分類器の訓練において重要な課題が提示されている。
マイノリティクラスとマイノリティクラスの両方のデータサンプルを混合することにより、反復的に合成サンプルを生成することを提案する。
提案するフレームワークの有効性を,7つの公開ベンチマークデータセットを用いて広範な実験により実証する。
論文 参考訳(メタデータ) (2023-08-28T18:48:34Z) - Towards Fair Disentangled Online Learning for Changing Environments [28.207499975916324]
オンライン学習における環境変化は、学習パラメータが環境に固有の部分的変化に起因していると論じる。
本稿では,各時点に収集したデータを2つの表現で切り離すことができるという仮定の下で,新しいアルゴリズムを提案する。
新たな後悔は、動的および静的な後悔の指標の混合形式と、公平性に配慮した長期的制約を伴って提案される。
論文 参考訳(メタデータ) (2023-05-31T19:04:16Z) - Simultaneous Improvement of ML Model Fairness and Performance by
Identifying Bias in Data [1.76179873429447]
トレーニング前にデータセットから削除すべき特定の種類のバイアスを記述したインスタンスを検出できるデータ前処理手法を提案する。
特に、類似した特徴を持つインスタンスが存在するが、保護属性の変動に起因するラベルが異なる問題設定では、固有のバイアスがデータセット内で引き起こされる、と主張する。
論文 参考訳(メタデータ) (2022-10-24T13:04:07Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
本稿では,構造空間上でインスタンス化された同変表現学習における最近の結果と,因果推論における古典的結果の簡易な利用が,いかに効果的に実現されたかを示す。
いくつかの仮定の下で、我々のモデルが複数のニュアンス変数を扱えることを実証し、そうでなければサンプルの大部分を取り除く必要のあるシナリオにおいて、プールされた科学データセットの分析を可能にする。
論文 参考訳(メタデータ) (2022-03-29T04:54:06Z) - Predicting with Confidence on Unseen Distributions [90.68414180153897]
ドメイン適応と予測不確実性文学を結びつけて、挑戦的な未知分布のモデル精度を予測する。
分類器の予測における信頼度(DoC)の差は,様々な変化に対して,分類器の性能変化を推定することに成功した。
具体的には, 合成分布と自然分布の区別について検討し, その単純さにもかかわらず, DoCは分布差の定量化に優れることを示した。
論文 参考訳(メタデータ) (2021-07-07T15:50:18Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
データ管理の統合コンポーネントにおける公平性について検討する。
本稿では,データセットの公平性を保証する特徴のサブコレクションを同定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-10T20:20:10Z) - NestedVAE: Isolating Common Factors via Weak Supervision [45.366986365879505]
我々は、バイアス低減の課題と、ドメイン間で共通する分離要因の関係を同定する。
共通因子を分離するために、潜伏変数モデルの理論と情報ボトルネック理論を組み合わせる。
共有重みを持つ2つの外部VAEは入力を再構成し、潜伏空間を推論し、一方、ネストされたVAEはペア化された画像の潜伏表現から1つの画像の潜伏表現を再構成しようとする。
論文 参考訳(メタデータ) (2020-02-26T15:49:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。