AgentOhana: Design Unified Data and Training Pipeline for Effective Agent Learning
- URL: http://arxiv.org/abs/2402.15506v3
- Date: Wed, 20 Mar 2024 06:00:14 GMT
- Title: AgentOhana: Design Unified Data and Training Pipeline for Effective Agent Learning
- Authors: Jianguo Zhang, Tian Lan, Rithesh Murthy, Zhiwei Liu, Weiran Yao, Juntao Tan, Thai Hoang, Liangwei Yang, Yihao Feng, Zuxin Liu, Tulika Awalgaonkar, Juan Carlos Niebles, Silvio Savarese, Shelby Heinecke, Huan Wang, Caiming Xiong,
- Abstract summary: textbfAgentOhana aggregates agent trajectories from distinct environments, spanning a wide array of scenarios.
textbfxLAM-v0.1, a large action model tailored for AI agents, demonstrates exceptional performance across various benchmarks.
- Score: 100.14685774661959
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Autonomous agents powered by large language models (LLMs) have garnered significant research attention. However, fully harnessing the potential of LLMs for agent-based tasks presents inherent challenges due to the heterogeneous nature of diverse data sources featuring multi-turn trajectories. In this paper, we introduce \textbf{AgentOhana} as a comprehensive solution to address these challenges. \textit{AgentOhana} aggregates agent trajectories from distinct environments, spanning a wide array of scenarios. It meticulously standardizes and unifies these trajectories into a consistent format, streamlining the creation of a generic data loader optimized for agent training. Leveraging the data unification, our training pipeline maintains equilibrium across different data sources and preserves independent randomness across devices during dataset partitioning and model training. Additionally, we present \textbf{xLAM-v0.1}, a large action model tailored for AI agents, which demonstrates exceptional performance across various benchmarks. Begin the exploration at \url{https://github.com/SalesforceAIResearch/xLAM}.
Related papers
- Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - AgentBank: Towards Generalized LLM Agents via Fine-Tuning on 50000+ Interaction Trajectories [44.68479398604844]
Fine-tuning on agent-environment interaction trajectory data holds significant promise for surfacing generalized agent capabilities.
We introduce AgentBank, by far the largest trajectory tuning data collection featuring more than 50k diverse high-quality interaction trajectories.
arXiv Detail & Related papers (2024-10-10T08:19:12Z) - Semi-Supervised One-Shot Imitation Learning [83.94646047695412]
One-shot Imitation Learning aims to imbue AI agents with the ability to learn a new task from a single demonstration.
We introduce the semi-supervised OSIL problem setting, where the learning agent is presented with a large dataset of trajectories.
We develop an algorithm specifically applicable to this semi-supervised OSIL setting.
arXiv Detail & Related papers (2024-08-09T18:11:26Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - One-Shot Federated Learning with Classifier-Guided Diffusion Models [44.604485649167216]
One-shot federated learning (OSFL) has gained attention in recent years due to its low communication cost.
In this paper, we explore the novel opportunities that diffusion models bring to OSFL and propose FedCADO.
FedCADO generates data that complies with clients' distributions and subsequently training the aggregated model on the server.
arXiv Detail & Related papers (2023-11-15T11:11:25Z) - Diffusion Model is an Effective Planner and Data Synthesizer for
Multi-Task Reinforcement Learning [101.66860222415512]
Multi-Task Diffusion Model (textscMTDiff) is a diffusion-based method that incorporates Transformer backbones and prompt learning for generative planning and data synthesis.
For generative planning, we find textscMTDiff outperforms state-of-the-art algorithms across 50 tasks on Meta-World and 8 maps on Maze2D.
arXiv Detail & Related papers (2023-05-29T05:20:38Z) - PerSim: Data-Efficient Offline Reinforcement Learning with Heterogeneous
Agents via Personalized Simulators [19.026312915461553]
We propose a model-based offline reinforcement learning (RL) approach called PerSim.
We first learn a personalized simulator for each agent by collectively using the historical trajectories across all agents prior to learning a policy.
This representation suggests a simple, regularized neural network architecture to effectively learn the transition dynamics per agent, even with scarce, offline data.
arXiv Detail & Related papers (2021-02-13T17:16:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.