Look Before You Leap: Problem Elaboration Prompting Improves Mathematical Reasoning in Large Language Models
- URL: http://arxiv.org/abs/2402.15764v2
- Date: Wed, 27 Mar 2024 01:23:58 GMT
- Title: Look Before You Leap: Problem Elaboration Prompting Improves Mathematical Reasoning in Large Language Models
- Authors: Haoran Liao, Jidong Tian, Shaohua Hu, Hao He, Yaohui Jin,
- Abstract summary: We propose a new approach named Problem Elaboration Prompting (PEP) to enhance the mathematical capacities of large language models (LLMs)
PEP decomposes and elucidates the problem context before reasoning, therefore enhancing the context modeling and parsing efficiency.
- Score: 15.65204261844768
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) still grapple with complex tasks like mathematical reasoning. Despite significant efforts invested in improving prefix prompts or reasoning process, the crucial role of problem context might have been neglected. Accurate recognition of inputs is fundamental for solving mathematical tasks, as ill-formed problems could potentially mislead LLM's reasoning. In this study, we propose a new approach named Problem Elaboration Prompting (PEP) to enhance the mathematical capacities of LLMs. Specifically, PEP decomposes and elucidates the problem context before reasoning, therefore enhancing the context modeling and parsing efficiency. Experiments across datasets and models demonstrate promising performances: (1) PEP demonstrates an overall enhancement in various mathematical tasks. For instance, with the GPT-3.5 model, PEP exhibits improvements of 9.93% and 8.80% on GSM8k through greedy decoding and self-consistency, respectively. (2) PEP can be easily implemented and integrated with other prompting methods. (3) PEP shows particular strength in handling distraction problems.
Related papers
- When Not to Answer: Evaluating Prompts on GPT Models for Effective Abstention in Unanswerable Math Word Problems [0.6249768559720122]
Large language models (LLMs) are increasingly relied upon to solve complex mathematical word problems.
They may generate inaccurate results when presented with unanswerable questions, raising concerns about their potential harm.
In this paper, we investigate whether GPTs can appropriately respond to unanswerable math word problems by applying prompts typically used in solvable mathematical scenarios.
arXiv Detail & Related papers (2024-10-16T20:40:50Z) - Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [50.485788083202124]
Reinforcement Learning (RL) plays a crucial role in aligning large language models with human preferences and improving their ability to perform complex tasks.
We introduce Direct Q-function Optimization (DQO), which formulates the response generation process as a Markov Decision Process (MDP) and utilizes the soft actor-critic (SAC) framework to optimize a Q-function directly parameterized by the language model.
Experimental results on two math problem-solving datasets, GSM8K and MATH, demonstrate that DQO outperforms previous methods, establishing it as a promising offline reinforcement learning approach for aligning language models.
arXiv Detail & Related papers (2024-10-11T23:29:20Z) - Teaching-Inspired Integrated Prompting Framework: A Novel Approach for Enhancing Reasoning in Large Language Models [8.370453544530914]
Large Language Models (LLMs) exhibit impressive performance across various domains but still struggle with arithmetic reasoning tasks.
Recent work shows the effectiveness of prompt design methods in enhancing reasoning capabilities.
We propose a novel and effective Teaching-Inspired Integrated Framework, which emulates the instructional process of a teacher guiding students.
arXiv Detail & Related papers (2024-10-10T16:02:36Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStar is a purely inference-based searching method for large language models.
It formulates reasoning tasks as searching problems and proposes two search ideas to identify the optimal reasoning paths.
It significantly enhances the reasoning abilities of open-source models, such as Llama-2-13B and Mistral-7B, and achieves comparable performance to GPT-3.5 and Grok-1.
arXiv Detail & Related papers (2024-05-25T15:07:33Z) - Achieving >97% on GSM8K: Deeply Understanding the Problems Makes LLMs Better Solvers for Math Word Problems [50.76385564061713]
Chain-of-Thought (CoT) prompting has enhanced the performance of Large Language Models (LLMs) across various reasoning tasks.
CoT usually suffers from three pitfalls: semantic misunderstanding errors, calculation errors, and step-missing errors.
We propose Deeply Understanding the Problems (DUP) to improve the LLMs' math problem-solving ability by addressing semantic misunderstanding errors.
arXiv Detail & Related papers (2024-04-23T12:16:05Z) - Assessing the Impact of Prompting Methods on ChatGPT's Mathematical
Capabilities [5.362057681411727]
This study critically evaluates the efficacy of prompting methods in enhancing the mathematical reasoning capability of large language models (LLMs)
We conduct this analysis on OpenAI's LLM, ChatGPT-3.5, on extensive problem sets from the MATH, GSM8K, and MMLU datasets.
Contrary to expectations, our empirical analysis reveals that none of the investigated methods consistently improves over ChatGPT-3.5's baseline performance.
arXiv Detail & Related papers (2023-12-22T17:39:40Z) - Self-Convinced Prompting: Few-Shot Question Answering with Repeated
Introspection [13.608076739368949]
We introduce a novel framework that harnesses the potential of large-scale pre-trained language models.
Our framework processes the output of a typical few-shot chain-of-thought prompt, assesses the correctness of the response, scrutinizes the answer, and ultimately produces a new solution.
arXiv Detail & Related papers (2023-10-08T06:36:26Z) - Thought Propagation: An Analogical Approach to Complex Reasoning with Large Language Models [62.96551299003463]
We propose textbftextitThought Propagation (TP) to enhance the complex reasoning ability of Large Language Models.
TP first prompts LLMs to propose and solve a set of analogous problems that are related to the input one.
TP reuses the results of analogous problems to directly yield a new solution or derive a knowledge-intensive plan for execution to amend the initial solution obtained from scratch.
arXiv Detail & Related papers (2023-10-06T01:40:09Z) - Fill in the Blank: Exploring and Enhancing LLM Capabilities for Backward Reasoning in Math Word Problems [17.80128896525717]
backward reasoning is relatively unexplored.
backward reasoning can be seen as the ''inverse'' of forward reasoning.
We propose variations of three different forward reasoning strategies to improve performance.
arXiv Detail & Related papers (2023-10-03T12:03:06Z) - Pushing the Limits of ChatGPT on NLP Tasks [79.17291002710517]
Despite the success of ChatGPT, its performances on most NLP tasks are still well below the supervised baselines.
In this work, we looked into the causes, and discovered that its subpar performance was caused by the following factors.
We propose a collection of general modules to address these issues, in an attempt to push the limits of ChatGPT on NLP tasks.
arXiv Detail & Related papers (2023-06-16T09:40:05Z) - SatLM: Satisfiability-Aided Language Models Using Declarative Prompting [68.40726892904286]
We propose a new satisfiability-aided language modeling (SatLM) approach for improving the reasoning capabilities of large language models (LLMs)
We use an LLM to generate a declarative task specification rather than an imperative program and leverage an off-the-shelf automated theorem prover to derive the final answer.
We evaluate SATLM on 8 different datasets and show that it consistently outperforms program-aided LMs in the imperative paradigm.
arXiv Detail & Related papers (2023-05-16T17:55:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.