PEA: Enhancing LLM Performance on Computational-Reasoning Tasks
- URL: http://arxiv.org/abs/2502.10938v1
- Date: Sun, 16 Feb 2025 00:27:05 GMT
- Title: PEA: Enhancing LLM Performance on Computational-Reasoning Tasks
- Authors: Zi Wang, Shiwei Weng, Mohannad Alhanahnah, Somesh Jha, Tom Reps,
- Abstract summary: This study introduces a formal approach to describe and solve a class of important reasoning tasks termed computational reasoning problems.
The framework decomposes these problems into predicate and enumeration components, using LLMs to synthesize programs based on specified predicates, enumeration, and aggregation rules.
Empirical evaluation reveals that PEA substantially enhances the performance of underlying models on benchmark computational problems, yielding an average accuracy improvement of approximately $50%$, coupled with increased efficiency.
- Score: 21.13926189404758
- License:
- Abstract: Large Language Models (LLMs) have exhibited remarkable capabilities across diverse domains, prompting investigations into their potential as generic reasoning engines. While recent studies have explored inference-time computation to enhance model performance on complex problems, current research lacks a formal framework to characterize the complexity of reasoning tasks. This study introduces the Predicate-Enumeration-Aggregation (PEA) framework, a formal approach to describe and solve a class of important reasoning tasks termed computational reasoning problems. The PEA framework decomposes these problems into predicate and enumeration components, using LLMs to synthesize programs based on specified predicates, enumeration, and aggregation rules. These synthesized programs are then executed to obtain solutions to the computational tasks. We demonstrate the framework's efficacy on benchmark tasks including Boolean satisfiability problems, game of $24$, and planning problems. Empirical evaluation reveals that PEA substantially enhances the performance of underlying models on benchmark computational problems, yielding an average accuracy improvement of approximately $50\%$, coupled with increased efficiency.
Related papers
- Inference-Time Computations for LLM Reasoning and Planning: A Benchmark and Insights [49.42133807824413]
We examine the reasoning and planning capabilities of large language models (LLMs) in solving complex tasks.
Recent advances in inference-time techniques demonstrate the potential to enhance LLM reasoning without additional training.
OpenAI's o1 model shows promising performance through its novel use of multi-step reasoning and verification.
arXiv Detail & Related papers (2025-02-18T04:11:29Z) - BRiTE: Bootstrapping Reinforced Thinking Process to Enhance Language Model Reasoning [78.63421517563056]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks.
We present a unified probabilistic framework that formalizes LLM reasoning through a novel graphical model.
We introduce the Bootstrapping Reinforced Thinking Process (BRiTE) algorithm, which works in two steps.
arXiv Detail & Related papers (2025-01-31T02:39:07Z) - REL: Working out is all you need [20.65423513616306]
We observe that OpenAI's O1 model approaches problem-solving in a distinctly human-like manner.
These sophisticated reasoning capabilities remain notably absent in other state-of-the-art language models.
arXiv Detail & Related papers (2024-12-05T22:32:01Z) - Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [49.362750475706235]
Reinforcement Learning (RL) plays a crucial role in aligning large language models with human preferences and improving their ability to perform complex tasks.
We introduce Direct Q-function Optimization (DQO), which formulates the response generation process as a Markov Decision Process (MDP) and utilizes the soft actor-critic (SAC) framework to optimize a Q-function directly parameterized by the language model.
Experimental results on two math problem-solving datasets, GSM8K and MATH, demonstrate that DQO outperforms previous methods, establishing it as a promising offline reinforcement learning approach for aligning language models.
arXiv Detail & Related papers (2024-10-11T23:29:20Z) - Think Beyond Size: Adaptive Prompting for More Effective Reasoning [0.0]
We introduce Adaptive Prompting, a dynamic and iterative framework designed to enhance reasoning by incorporating real-time adjustments to prompt structures and validation mechanisms.
Results demonstrate that Adaptive Prompting significantly improves performance on diverse reasoning benchmarks, including arithmetic reasoning (GSM8K, MultiArithm), logical reasoning and commonsense tasks.
Our approach enables smaller models to achieve competitive performance with larger counterparts, such as GPT-4, while maintaining computational efficiency.
arXiv Detail & Related papers (2024-10-10T17:14:36Z) - Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
Large language models (LLMs) struggle with consistent and accurate reasoning.
LLMs are trained primarily on correct solutions, reducing their ability to detect and learn from errors.
We propose a novel collaborative method integrating Chain-of-Thought (CoT) and Program-of-Thought (PoT) solutions for verification.
arXiv Detail & Related papers (2024-10-05T05:21:48Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStar is a purely inference-based searching method for large language models.
It formulates reasoning tasks as searching problems and proposes two search ideas to identify the optimal reasoning paths.
It significantly enhances the reasoning abilities of open-source models, such as Llama-2-13B and Mistral-7B, and achieves comparable performance to GPT-3.5 and Grok-1.
arXiv Detail & Related papers (2024-05-25T15:07:33Z) - A Mechanistic Interpretation of Arithmetic Reasoning in Language Models
using Causal Mediation Analysis [128.0532113800092]
We present a mechanistic interpretation of Transformer-based LMs on arithmetic questions.
This provides insights into how information related to arithmetic is processed by LMs.
arXiv Detail & Related papers (2023-05-24T11:43:47Z) - Exploring Viable Algorithmic Options for Learning from Demonstration
(LfD): A Parameterized Complexity Approach [0.0]
In this paper, we show how such a systematic exploration of algorithmic options can be done using parameterized complexity analysis.
We show that none of our problems can be solved efficiently either in general or relative to a number of (often simultaneous) restrictions on environments, demonstrations, and policies.
arXiv Detail & Related papers (2022-05-10T15:54:06Z) - An Information-Theoretic Framework for Unifying Active Learning Problems [44.758281991246825]
This paper presents an information-theoretic framework for unifying active learning problems.
We first introduce a novel active learning criterion that subsumes an existing LSE algorithm.
By exploiting the relationship between LSE and BO, we design a competitive information-theoretic acquisition function for BO.
arXiv Detail & Related papers (2020-12-19T14:22:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.