BETA-UAV: Blockchain-based Efficient Authentication for Secure UAV Communication
- URL: http://arxiv.org/abs/2402.15817v1
- Date: Sat, 24 Feb 2024 13:54:54 GMT
- Title: BETA-UAV: Blockchain-based Efficient Authentication for Secure UAV Communication
- Authors: Sana Hafeez, Mahmoud A. Shawky, Mohammad Al-Quraan, Lina Mohjazi, Muhammad Ali Imran, Yao Sun,
- Abstract summary: This paper presents an Efficient, and Trusted Authentication scheme for UAV communication, BETA-UAV.
The smart contract in BETA-UAV allows participants to publish and call transactions from the blockchain network.
transaction addresses are proof of freshness and trustworthiness for subsequent transmissions.
- Score: 6.885742280873289
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unmanned aerial vehicles (UAV), an emerging architecture that embodies flying ad-hoc networks, face critical privacy and security challenges, mainly when engaged in data-sensitive missions. Therefore, message authentication is a crucial security feature in drone communications. This paper presents a Blockchain-based Efficient, and Trusted Authentication scheme for UAV communication, BETA-UAV, which exploits the inherent properties of blockchain technology concerning memorability and is immutable to record communication sessions via transactions using a smart contract. The smart contract in BETA-UAV allows participants to publish and call transactions from the blockchain network. Furthermore, transaction addresses are proof of freshness and trustworthiness for subsequent transmissions. Furthermore, we investigated their ability to resist active attacks, such as impersonation, replaying, and modification. In addition, we evaluate the gas costs associated with the functions of the smart contract by implementing a BETA-UAV on the Ethereum public blockchain. A comparison of the computation and communication overheads shows that the proposed approach can save significant costs over traditional techniques.
Related papers
- Securing UAV Communication: Authentication and Integrity [0.0]
We propose an authentication method to secure UAV data exchange over an insecure communication channel.
Our solution combines Diffie-Hellman key exchange and Hash-based Message Authentication Code (HMAC) within ROS communication channels.
Both drones successfully detected tampered keys, affirming our method's efficacy in protecting UAV communication.
arXiv Detail & Related papers (2024-10-06T22:36:06Z) - BAZAM: A Blockchain-Assisted Zero-Trust Authentication in Multi-UAV Wireless Networks [21.51085709522321]
Unmanned aerial vehicles (UAVs) are vulnerable to interception and attacks when operated remotely without a unified identity authentication.
We introduce a blockchain-assisted zero-trust authentication scheme, namely BAZAM, designed for multi-UAV wireless networks.
arXiv Detail & Related papers (2024-06-30T09:06:49Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Graph Attention Network-based Block Propagation with Optimal AoI and Reputation in Web 3.0 [59.94605620983965]
We design a Graph Attention Network (GAT)-based reliable block propagation optimization framework for blockchain-enabled Web 3.0.
To achieve the reliability of block propagation, we introduce a reputation mechanism based on the subjective logic model.
Considering that the GAT possesses the excellent ability to process graph-structured data, we utilize the GAT with reinforcement learning to obtain the optimal block propagation trajectory.
arXiv Detail & Related papers (2024-03-20T01:58:38Z) - A Blockchain-Enabled Framework of UAV Coordination for Post-Disaster Networks [7.249638174814088]
This paper presents a robust blockchain-enabled framework to securely coordinate UAV fleets for disaster response.
We make two key contributions: a consortium blockchain for secure and private multi-agency coordination; and an optimized consensus protocol balancing efficiency and fault tolerance.
Comprehensive simulations showcase the framework's ability to enhance transparency, automation, scalability, and cyber-attack resilience for UAV coordination in post-disaster networks.
arXiv Detail & Related papers (2024-02-23T14:01:27Z) - Blockchain-Empowered Immutable and Reliable Delivery Service (BIRDS) Using UAV Networks [6.66583575156837]
Exploiting unmanned aerial vehicles (UAVs) for delivery services is expected to reduce delivery time and human resource costs.
The proximity of these UAVs to the ground can make them an ideal target for opportunistic criminals.
We propose the blockchain-Empowered, Immutable, and Reliable Delivery Service (BIRDS) framework to address data security challenges.
arXiv Detail & Related papers (2024-02-07T12:39:59Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
The Controller Area Network (CAN) bus leaves in-vehicle communications inherently non-secure.
This paper reviews and compares the 15 most prominent authentication protocols for the CAN bus.
We evaluate protocols based on essential operational criteria that contribute to ease of implementation.
arXiv Detail & Related papers (2024-01-19T14:52:04Z) - PTTS: Zero-Knowledge Proof-based Private Token Transfer System on Ethereum Blockchain and its Network Flow Based Balance Range Privacy Attack Analysis [0.0]
We propose a Private Token Transfer System (PTTS) for the public blockchain.
For the proposed framework, zero-knowledge based protocol has been designed using Zokrates and integrated into our private token smart contract.
In the second part of the paper, we provide security and privacy analysis including the replay attack and the balance range privacy attack.
arXiv Detail & Related papers (2023-08-29T09:13:31Z) - Blockchain Large Language Models [65.7726590159576]
This paper presents a dynamic, real-time approach to detecting anomalous blockchain transactions.
The proposed tool, BlockGPT, generates tracing representations of blockchain activity and trains from scratch a large language model to act as a real-time Intrusion Detection System.
arXiv Detail & Related papers (2023-04-25T11:56:18Z) - Blockchain-based Privacy Preservation for 5G-enabled Drone
Communications [47.852641639155664]
5G-enabled drones have potential applications in a variety of both military and civilian settings.
There are security and privacy considerations underpinning 5G-enabled drone communications.
We will review existing blockchain-based solutions after introducing the architecture for 5G-enabled drone communications and blockchain.
arXiv Detail & Related papers (2020-09-07T15:27:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.