What's in an embedding? Would a rose by any embedding smell as sweet?
- URL: http://arxiv.org/abs/2406.06870v3
- Date: Sat, 15 Jun 2024 06:35:33 GMT
- Title: What's in an embedding? Would a rose by any embedding smell as sweet?
- Authors: Venkat Venkatasubramanian,
- Abstract summary: Large Language Models (LLMs) are often criticized for lacking true "understanding" and the ability to "reason" with their knowledge.
We suggest that LLMs do develop a kind of empirical "understanding" that is "geometry"-like, which seems adequate for a range of applications in NLP.
To overcome these limitations, we suggest that LLMs should be integrated with an "algebraic" representation of knowledge that includes symbolic AI elements.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are often criticized for lacking true "understanding" and the ability to "reason" with their knowledge, being seen merely as autocomplete systems. We believe that this assessment might be missing a nuanced insight. We suggest that LLMs do develop a kind of empirical "understanding" that is "geometry"-like, which seems adequate for a range of applications in NLP, computer vision, coding assistance, etc. However, this "geometric" understanding, built from incomplete and noisy data, makes them unreliable, difficult to generalize, and lacking in inference capabilities and explanations, similar to the challenges faced by heuristics-based expert systems decades ago. To overcome these limitations, we suggest that LLMs should be integrated with an "algebraic" representation of knowledge that includes symbolic AI elements used in expert systems. This integration aims to create large knowledge models (LKMs) that not only possess "deep" knowledge grounded in first principles, but also have the ability to reason and explain, mimicking human expert capabilities. To harness the full potential of generative AI safely and effectively, a paradigm shift is needed from LLM to more comprehensive LKM.
Related papers
- Knowledge Mechanisms in Large Language Models: A Survey and Perspective [88.51320482620679]
This paper reviews knowledge mechanism analysis from a novel taxonomy including knowledge utilization and evolution.
We discuss what knowledge LLMs have learned, the reasons for the fragility of parametric knowledge, and the potential dark knowledge (hypothesis) that will be challenging to address.
arXiv Detail & Related papers (2024-07-22T06:15:59Z) - Should We Fear Large Language Models? A Structural Analysis of the Human
Reasoning System for Elucidating LLM Capabilities and Risks Through the Lens
of Heidegger's Philosophy [0.0]
This study investigates the capabilities and risks of Large Language Models (LLMs)
It uses the innovative parallels between the statistical patterns of word relationships within LLMs and Martin Heidegger's concepts of "ready-to-hand" and "present-at-hand"
Our findings reveal that while LLMs possess the capability for Direct Explicative Reasoning and Pseudo Rational Reasoning, they fall short in authentic rational reasoning and have no creative reasoning capabilities.
arXiv Detail & Related papers (2024-03-05T19:40:53Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
Large language models (LLMs) are primarily evaluated by overall performance on various text understanding and generation tasks.
We present FAC$2$E, a framework for Fine-grAined and Cognition-grounded LLMs' Capability Evaluation.
arXiv Detail & Related papers (2024-02-29T21:05:37Z) - Decoding Intelligence: A Framework for Certifying Knowledge Comprehension in LLMs [3.6293956720749425]
We propose the first framework to certify knowledge comprehension in Large Language Models with formal probabilistic guarantees.
We design and certify novel specifications that precisely represent distributions of knowledge comprehension prompts leveraging knowledge graphs.
We find that the knowledge comprehension capability improves significantly with scaling the size of the models.
arXiv Detail & Related papers (2024-02-24T23:16:57Z) - Large Knowledge Model: Perspectives and Challenges [37.42721596964844]
emphLarge Language Models (LLMs) epitomize the pre-training of extensive, sequence-based world knowledge into neural networks.
This article explores large models through the lens of "knowledge"
Considering the intricate nature of human knowledge, we advocate for the creation of emphLarge Knowledge Models (LKM)
arXiv Detail & Related papers (2023-12-05T12:07:30Z) - RECALL: A Benchmark for LLMs Robustness against External Counterfactual
Knowledge [69.79676144482792]
This study aims to evaluate the ability of LLMs to distinguish reliable information from external knowledge.
Our benchmark consists of two tasks, Question Answering and Text Generation, and for each task, we provide models with a context containing counterfactual information.
arXiv Detail & Related papers (2023-11-14T13:24:19Z) - Democratizing Reasoning Ability: Tailored Learning from Large Language
Model [97.4921006089966]
We propose a tailored learning approach to distill such reasoning ability to smaller LMs.
We exploit the potential of LLM as a reasoning teacher by building an interactive multi-round learning paradigm.
To exploit the reasoning potential of the smaller LM, we propose self-reflection learning to motivate the student to learn from self-made mistakes.
arXiv Detail & Related papers (2023-10-20T07:50:10Z) - Generative AI vs. AGI: The Cognitive Strengths and Weaknesses of Modern
LLMs [0.0]
It is argued that incremental improvement of such LLMs is not a viable approach to working toward human-level AGI.
Social and ethical matters regarding LLMs are very briefly touched from this perspective.
arXiv Detail & Related papers (2023-09-19T07:12:55Z) - Knowledge Solver: Teaching LLMs to Search for Domain Knowledge from
Knowledge Graphs [19.0797968186656]
Large language models (LLMs) are versatile and can solve different tasks due to their emergent ability and generalizability.
In some previous works, additional modules like graph neural networks (GNNs) are trained on retrieved knowledge from external knowledge bases.
arXiv Detail & Related papers (2023-09-06T15:55:01Z) - Brain in a Vat: On Missing Pieces Towards Artificial General
Intelligence in Large Language Models [83.63242931107638]
We propose four characteristics of generally intelligent agents.
We argue that active engagement with objects in the real world delivers more robust signals for forming conceptual representations.
We conclude by outlining promising future research directions in the field of artificial general intelligence.
arXiv Detail & Related papers (2023-07-07T13:58:16Z) - Do Large Language Models Know What They Don't Know? [74.65014158544011]
Large language models (LLMs) have a wealth of knowledge that allows them to excel in various Natural Language Processing (NLP) tasks.
Despite their vast knowledge, LLMs are still limited by the amount of information they can accommodate and comprehend.
This study aims to evaluate LLMs' self-knowledge by assessing their ability to identify unanswerable or unknowable questions.
arXiv Detail & Related papers (2023-05-29T15:30:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.