論文の概要: Building Flexible Machine Learning Models for Scientific Computing at Scale
- arxiv url: http://arxiv.org/abs/2402.16014v2
- Date: Sun, 13 Oct 2024 14:54:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-15 15:04:10.411561
- Title: Building Flexible Machine Learning Models for Scientific Computing at Scale
- Title(参考訳): 大規模科学コンピューティングのためのフレキシブル機械学習モデルの構築
- Authors: Tianyu Chen, Haoyi Zhou, Ying Li, Hao Wang, Chonghan Gao, Rongye Shi, Shanghang Zhang, Jianxin Li,
- Abstract要約: OmniArchは,物理アライメントによるマルチスケール・マルチ物理科学計算問題の解決を目的とした,最初のプロトタイプである。
PDEBench上で1D-2D-3Dの統合事前トレーニングを行い、1D, 2D, 3D PDEの新たなパフォーマンスベンチマークを設定するだけでなく、コンテキスト内およびゼロショット学習アプローチによる新しい物理への例外的な適応性を示す。
- 参考スコア(独自算出の注目度): 35.41293100957156
- License:
- Abstract: Foundation models have revolutionized language modeling, while whether this success is replicated in scientific computing remains unexplored. We present OmniArch, the first prototype aiming at solving multi-scale and multi-physics scientific computing problems with physical alignment. We addressed all three challenges with one unified architecture. Its pre-training stage contains a Fourier Encoder-decoder fading out the disharmony across separated dimensions and a Transformer backbone integrating quantities through temporal dynamics, and the novel PDE-Aligner performs physics-informed fine-tuning under flexible conditions. As far as we know, we first conduct 1D-2D-3D united pre-training on the PDEBench, and it sets not only new performance benchmarks for 1D, 2D, and 3D PDEs but also demonstrates exceptional adaptability to new physics via in-context and zero-shot learning approaches, which supports realistic engineering applications and foresight physics discovery.
- Abstract(参考訳): 基礎モデルは言語モデリングに革命をもたらしたが、科学計算でこの成功が再現されるかどうかは未解明のままである。
OmniArchは,物理アライメントによるマルチスケール・マルチ物理科学計算問題の解決を目的とした,最初のプロトタイプである。
私たちは3つの課題に1つの統一アーキテクチャで対処しました。
事前訓練段階には、分離された次元にわたって不整合を消失させるフーリエエンコーダ・デコーダと、時間力学を通して量を統合するトランスフォーマーバックボーンが含まれており、新しいPDE-Alignerは柔軟な条件下で物理インフォームド微調整を行う。
PDEBench上で1D-2D-3Dの統合事前トレーニングを行い、1D, 2D, 3D PDEの新たなパフォーマンスベンチマークを設定するだけでなく、コンテキスト内およびゼロショット学習アプローチによる新しい物理への例外的な適応性を実証し、現実的な工学的応用とフォレスト物理発見をサポートする。
関連論文リスト
- DEL: Discrete Element Learner for Learning 3D Particle Dynamics with Neural Rendering [10.456618054473177]
逆レンダリングにより2次元画像から3次元ダイナミクスを学習する方法を示す。
学習可能なグラフカーネルを古典的な離散要素分析フレームワークに組み込む。
本手法は, 部分的な2次元観察から, 各種材料の力学を効果的に学習することができる。
論文 参考訳(メタデータ) (2024-10-11T16:57:02Z) - Text2PDE: Latent Diffusion Models for Accessible Physics Simulation [7.16525545814044]
物理シミュレーションに潜時拡散モデルを適用する方法をいくつか紹介する。
提案手法は、現在のニューラルPDEソルバと、精度と効率の両面で競合することを示す。
スケーラブルで正確で使用可能な物理シミュレータを導入することで、ニューラルPDEソルバを実用化に近づけたいと思っています。
論文 参考訳(メタデータ) (2024-10-02T01:09:47Z) - PhyRecon: Physically Plausible Neural Scene Reconstruction [81.73129450090684]
PHYRECONは、微分可能なレンダリングと微分可能な物理シミュレーションの両方を利用して暗黙的な表面表現を学習する最初のアプローチである。
この設計の中心は、SDFに基づく暗黙の表現と明示的な表面点の間の効率的な変換である。
また,物理シミュレータの安定性も向上し,全データセットに対して少なくとも40%の改善が得られた。
論文 参考訳(メタデータ) (2024-04-25T15:06:58Z) - PonderV2: Pave the Way for 3D Foundation Model with A Universal
Pre-training Paradigm [114.47216525866435]
本稿では,効率的な3D表現の獲得を容易にするために,新しいユニバーサル3D事前学習フレームワークを提案する。
PonderV2は、11の室内および屋外ベンチマークで最先端のパフォーマンスを達成したことで、その効果が示唆された。
論文 参考訳(メタデータ) (2023-10-12T17:59:57Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
完全深層学習に基づくサロゲートモデルとして,LAMP(Learning Controllable Adaptive Simulation for Multi- resolution Physics)を導入した。
LAMPは、前方進化を学習するためのグラフニューラルネットワーク(GNN)と、空間的洗練と粗大化のポリシーを学ぶためのGNNベースのアクター批判で構成されている。
我々は,LAMPが最先端のディープラーニングサロゲートモデルより優れており,長期予測誤差を改善するために,適応的なトレードオフ計算が可能であることを実証した。
論文 参考訳(メタデータ) (2023-05-01T23:20:27Z) - PlasticineLab: A Soft-Body Manipulation Benchmark with Differentiable
Physics [89.81550748680245]
PasticineLabと呼ばれる新しい微分可能な物理ベンチマークを導入する。
各タスクにおいて、エージェントはマニピュレータを使用して、プラスチックを所望の構成に変形させる。
本稿では,既存の強化学習(RL)手法と勾配に基づく手法について評価する。
論文 参考訳(メタデータ) (2021-04-07T17:59:23Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。