Honeybee: Byzantine Tolerant Decentralized Peer Sampling with Verifiable Random Walks
- URL: http://arxiv.org/abs/2402.16201v3
- Date: Fri, 24 Jan 2025 03:50:26 GMT
- Title: Honeybee: Byzantine Tolerant Decentralized Peer Sampling with Verifiable Random Walks
- Authors: Yunqi Zhang, Shaileshh Bojja Venkatakrishnan,
- Abstract summary: Honeybee is a decentralized algorithm for sampling nodes that uses random walks and peer consistency checks.
Honeybee is secure against attacks even in the presence of an overwhelming number of achieved nodes.
- Score: 6.120657470247715
- License:
- Abstract: Popular blockchains today have hundreds of thousands of nodes and need to be able to support sophisticated scaling solutions$\unicode{x2013}$such as sharding, data availability sampling, and layer-2 methods. Designing secure and efficient peer-to-peer (p2p) networking protocols at these scales to support the tight demands of the upper layer crypto-economic primitives is a highly non-trivial endeavor. We identify decentralized, uniform random sampling of nodes as a fundamental capability necessary for building robust p2p networks in emerging blockchain networks. Sampling algorithms used in practice today (primarily for address discovery) rely on either distributed hash tables (e.g., Kademlia) or sharing addresses with neighbors (e.g., GossipSub), and are not secure in a Sybil setting. We present Honeybee, a decentralized algorithm for sampling nodes that uses verifiable random walks and peer consistency checks. Honeybee is secure against attacks even in the presence of an overwhelming number of Byzantine nodes (e.g., $\geq50\%$ of the network). We evaluate Honeybee through experiments and show that the quality of sampling achieved by Honeybee is significantly better compared to the state-of-the-art. Our proposed algorithm has implications for network design in both full nodes and light nodes.
Related papers
- Scalable Zero-Knowledge Proofs for Verifying Cryptographic Hashing in Blockchain Applications [16.72979347045808]
Zero-knowledge proofs (ZKPs) have emerged as a promising solution to address the scalability challenges in modern blockchain systems.
This study proposes a methodology for generating and verifying ZKPs to ensure the computational integrity of cryptographic hashing.
arXiv Detail & Related papers (2024-07-03T21:19:01Z) - Larger-scale Nakamoto-style Blockchains Don't Necessarily Offer Better Security [1.2644625435032817]
Research on Nakamoto-style consensus protocols has shown that network delays degrade the security of these protocols.
This contradicts the very foundation of blockchains, namely that decentralization improves security.
We take a closer look at how the network scale affects security of Nakamoto-style blockchains.
arXiv Detail & Related papers (2024-04-15T16:09:41Z) - Generalized Hybrid Search and Applications to Blockchain and Hash
Function Security [50.16790546184646]
We first examine the hardness of solving various search problems by hybrid quantum-classical strategies.
We then construct a hybrid quantum-classical search algorithm and analyze its success probability.
arXiv Detail & Related papers (2023-11-07T04:59:02Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
We propose an Adaptive Sampling and Aggregation-based Graph Neural Network (ASA-GNN) that learns discriminative representations to improve the performance of transaction fraud detection.
A neighbor sampling strategy is performed to filter noisy nodes and supplement information for fraudulent nodes.
Experiments on three real financial datasets demonstrate that the proposed method ASA-GNN outperforms state-of-the-art ones.
arXiv Detail & Related papers (2023-07-11T07:48:39Z) - Secure Deep Learning-based Distributed Intelligence on Pocket-sized
Drones [75.80952211739185]
Palm-sized nano-drones are an appealing class of edge nodes, but their limited computational resources prevent running large deep-learning models onboard.
Adopting an edge-fog computational paradigm, we can offload part of the computation to the fog; however, this poses security concerns if the fog node, or the communication link, can not be trusted.
We propose a novel distributed edge-fog execution scheme that validates fog computation by redundantly executing a random subnetwork aboard our nano-drone.
arXiv Detail & Related papers (2023-07-04T08:29:41Z) - Proof-of-work consensus by quantum sampling [0.0]
We propose to use a variant, called coarse-grained boson-sampling (CGBS), as a quantum Proof-of-Work scheme for blockchain consensus.
The users perform boson sampling using input states that depend on the current block information and commit their samples to the network.
By combining rewards for miners committing honest samples together with penalties for miners committing dishonest samples, a Nash equilibrium is found that incentivizes honest nodes.
arXiv Detail & Related papers (2023-05-31T13:58:40Z) - A quantum algorithm for finding collision-inducing disturbance vectors
in SHA-1 [2.963904090194172]
Modern cryptographic protocols rely on sophisticated hash functions to generate quasi-unique numbers that serve as signatures for user authentication and other security verifications.
The security could be compromised by finding texts hash-mappable to identical numbers, forming so-called collision attack.
We propose an algorithm that takes advantage of entangled quantum states for concurrent seeding of candidate disturbance vectors.
arXiv Detail & Related papers (2022-10-23T16:01:17Z) - A QUBO formulation for top-$\tau$ eigencentrality nodes [0.0]
We lay the foundations for solving the eigencentrality problem of ranking the importance of the nodes of a network with scores from the eigenvector of the network.
The problem is reformulated as a quadratic unconstrained binary optimization (QUBO) that can be solved on both quantum architectures.
The results focus on correctly identifying a given number of the most important nodes in numerous networks given by the sparse vector solution of our QUBO formulation of the problem of identifying the top-$tau$ highest eigencentrality nodes in a network on both the D-Wave and IBM quantum computers.
arXiv Detail & Related papers (2021-05-01T05:35:44Z) - Quantum Multi-Solution Bernoulli Search with Applications to Bitcoin's
Post-Quantum Security [67.06003361150228]
A proof of work (PoW) is an important cryptographic construct enabling a party to convince others that they invested some effort in solving a computational task.
In this work, we examine the hardness of finding such chain of PoWs against quantum strategies.
We prove that the chain of PoWs problem reduces to a problem we call multi-solution Bernoulli search, for which we establish its quantum query complexity.
arXiv Detail & Related papers (2020-12-30T18:03:56Z) - Deep Reinforcement Learning with Label Embedding Reward for Supervised
Image Hashing [85.84690941656528]
We introduce a novel decision-making approach for deep supervised hashing.
We learn a deep Q-network with a novel label embedding reward defined by Bose-Chaudhuri-Hocquenghem codes.
Our approach outperforms state-of-the-art supervised hashing methods under various code lengths.
arXiv Detail & Related papers (2020-08-10T09:17:20Z) - ESPN: Extremely Sparse Pruned Networks [50.436905934791035]
We show that a simple iterative mask discovery method can achieve state-of-the-art compression of very deep networks.
Our algorithm represents a hybrid approach between single shot network pruning methods and Lottery-Ticket type approaches.
arXiv Detail & Related papers (2020-06-28T23:09:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.