A quantum algorithm for finding collision-inducing disturbance vectors
in SHA-1
- URL: http://arxiv.org/abs/2210.12762v1
- Date: Sun, 23 Oct 2022 16:01:17 GMT
- Title: A quantum algorithm for finding collision-inducing disturbance vectors
in SHA-1
- Authors: Jiheng Duan, Minghui Li, Hou Ian
- Abstract summary: Modern cryptographic protocols rely on sophisticated hash functions to generate quasi-unique numbers that serve as signatures for user authentication and other security verifications.
The security could be compromised by finding texts hash-mappable to identical numbers, forming so-called collision attack.
We propose an algorithm that takes advantage of entangled quantum states for concurrent seeding of candidate disturbance vectors.
- Score: 2.963904090194172
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern cryptographic protocols rely on sophisticated hash functions to
generate quasi-unique numbers that serve as signatures for user authentication
and other security verifications. The security could be compromised by finding
texts hash-mappable to identical numbers, forming so-called collision attack.
Seeding a disturbance vector in the hash mapping to obtain a successful
collision is that a major focus of cryptography study in the past two decades
to improve hash protocols. We propose an algorithm that takes advantage of
entangled quantum states for concurrent seeding of candidate disturbance
vectors, out of which the one entailing collision is selected through a
combination of quantum search, phase gating, diffusion gating, and information
feedbacks from classical computing machinery. The complexity reduction is shown
to be on the order of $\mathcal{O}(2^{n/2+1})$ where $n$ is the number of
qubits encoding addresses. We demonstrate the practicality of the proposed by
an implementation scheme based on degenerate optical parametric oscillators.
Related papers
- Quantum Truncated Differential and Boomerang Attack [10.853582091917236]
In this article, we concentrate on truncated differential and boomerang cryptanalysis.
We first present a quantum algorithm which is designed for finding truncated differentials of symmetric ciphers.
We prove that, with a overwhelming probability, the truncated differentials output by our algorithm must have high differential probability for the vast majority of keys in key space.
arXiv Detail & Related papers (2024-07-21T11:34:29Z) - Quantum One-Wayness of the Single-Round Sponge with Invertible Permutations [49.1574468325115]
Sponge hashing is a widely used class of cryptographic hash algorithms.
Intrepid permutations have so far remained a fundamental open problem.
We show that finding zero-pairs in a random $2n$-bit permutation requires at least $Omega (2n/2)$ many queries.
arXiv Detail & Related papers (2024-03-07T18:46:58Z) - Grover's oracle for the Shortest Vector Problem and its application in
hybrid classical-quantum solvers [0.38366697175402226]
Finding the shortest vector in a lattice is a problem that is believed to be hard both for classical and quantum computers.
Finding the best classical, quantum or hybrid classical-quantum algorithms for SVP is necessary to select cryptosystem parameters that offer sufficient level of security.
Grover's search quantum algorithm provides a generic quadratic speed-up.
We analyze how to combine Grover's quantum search for small SVP instances with state-of-the-art classical solvers.
arXiv Detail & Related papers (2024-02-21T16:05:49Z) - Generalized Hybrid Search and Applications to Blockchain and Hash
Function Security [50.16790546184646]
We first examine the hardness of solving various search problems by hybrid quantum-classical strategies.
We then construct a hybrid quantum-classical search algorithm and analyze its success probability.
arXiv Detail & Related papers (2023-11-07T04:59:02Z) - The NISQ Complexity of Collision Finding [2.9405711598281536]
A fundamental primitive in modern cryptography, collision-resistant hashing ensures there is no efficient way to find inputs that produce the same hash value.
Quantum adversaries now require full-scale computers equipped with the power of NISQ.
In this paper, we investigate three different models for NISQ algorithms achieve tight bounds for all of them.
arXiv Detail & Related papers (2022-11-23T13:55:28Z) - A Variational Quantum Attack for AES-like Symmetric Cryptography [69.80357450216633]
We propose a variational quantum attack algorithm (VQAA) for classical AES-like symmetric cryptography.
In the VQAA, the known ciphertext is encoded as the ground state of a Hamiltonian that is constructed through a regular graph.
arXiv Detail & Related papers (2022-05-07T03:15:15Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Quantum Proofs of Deletion for Learning with Errors [91.3755431537592]
We construct the first fully homomorphic encryption scheme with certified deletion.
Our main technical ingredient is an interactive protocol by which a quantum prover can convince a classical verifier that a sample from the Learning with Errors distribution in the form of a quantum state was deleted.
arXiv Detail & Related papers (2022-03-03T10:07:32Z) - Quantum collision finding for homomorphic hash functions [0.0]
We present concrete attack examples to provable hash functions, including a preimage attack to $oplus$-linear hash functions.
Hash functions which are additive or multiplicative are vulnerable to a quantum attack using the hidden subgroup problem algorithm for quantum computers.
arXiv Detail & Related papers (2021-07-30T23:01:02Z) - Quantum Search for Scaled Hash Function Preimages [1.3299507495084417]
We present the implementation of Grover's algorithm in a quantum simulator to perform a quantum search for preimages of two scaled hash functions.
We show that strategies that suggest a shortcut based on sampling the quantum register after a few steps of Grover's algorithm can only provide some marginal practical advantage in terms of error mitigation.
arXiv Detail & Related papers (2020-09-01T18:00:02Z) - Targeted Attack for Deep Hashing based Retrieval [57.582221494035856]
We propose a novel method, dubbed deep hashing targeted attack (DHTA), to study the targeted attack on such retrieval.
We first formulate the targeted attack as a point-to-set optimization, which minimizes the average distance between the hash code of an adversarial example and those of a set of objects with the target label.
To balance the performance and perceptibility, we propose to minimize the Hamming distance between the hash code of the adversarial example and the anchor code under the $ellinfty$ restriction on the perturbation.
arXiv Detail & Related papers (2020-04-15T08:36:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.