Language-guided Skill Learning with Temporal Variational Inference
- URL: http://arxiv.org/abs/2402.16354v2
- Date: Mon, 27 May 2024 14:31:38 GMT
- Title: Language-guided Skill Learning with Temporal Variational Inference
- Authors: Haotian Fu, Pratyusha Sharma, Elias Stengel-Eskin, George Konidaris, Nicolas Le Roux, Marc-Alexandre Côté, Xingdi Yuan,
- Abstract summary: We present an algorithm for skill discovery from expert demonstrations.
Our results demonstrate that agents equipped with our method are able to discover skills that help accelerate learning.
- Score: 38.733622157088035
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an algorithm for skill discovery from expert demonstrations. The algorithm first utilizes Large Language Models (LLMs) to propose an initial segmentation of the trajectories. Following that, a hierarchical variational inference framework incorporates the LLM-generated segmentation information to discover reusable skills by merging trajectory segments. To further control the trade-off between compression and reusability, we introduce a novel auxiliary objective based on the Minimum Description Length principle that helps guide this skill discovery process. Our results demonstrate that agents equipped with our method are able to discover skills that help accelerate learning and outperform baseline skill learning approaches on new long-horizon tasks in BabyAI, a grid world navigation environment, as well as ALFRED, a household simulation environment.
Related papers
- A Unified Framework for Neural Computation and Learning Over Time [56.44910327178975]
Hamiltonian Learning is a novel unified framework for learning with neural networks "over time"
It is based on differential equations that: (i) can be integrated without the need of external software solvers; (ii) generalize the well-established notion of gradient-based learning in feed-forward and recurrent networks; (iii) open to novel perspectives.
arXiv Detail & Related papers (2024-09-18T14:57:13Z) - Traj-LLM: A New Exploration for Empowering Trajectory Prediction with Pre-trained Large Language Models [12.687494201105066]
This paper proposes Traj-LLM, the first to investigate the potential of using Large Language Models (LLMs) to generate future motion from agents' past/observed trajectories and scene semantics.
LLMs' powerful comprehension abilities capture a spectrum of high-level scene knowledge and interactive information.
Emulating the human-like lane focus cognitive function, we introduce lane-aware probabilistic learning powered by the pioneering Mamba module.
arXiv Detail & Related papers (2024-05-08T09:28:04Z) - Reinforcement Learning Based Multi-modal Feature Fusion Network for
Novel Class Discovery [47.28191501836041]
In this paper, we employ a Reinforcement Learning framework to simulate the cognitive processes of humans.
We also deploy a Member-to-Leader Multi-Agent framework to extract and fuse features from multi-modal information.
We demonstrate the performance of our approach in both the 3D and 2D domains by employing the OS-MN40, OS-MN40-Miss, and Cifar10 datasets.
arXiv Detail & Related papers (2023-08-26T07:55:32Z) - Subspace Distillation for Continual Learning [27.22147868163214]
We propose a knowledge distillation technique that takes into account the manifold structure of a neural network in learning novel tasks.
We demonstrate that the modeling with subspaces provides several intriguing properties, including robustness to noise.
Empirically, we observe that our proposed method outperforms various continual learning methods on several challenging datasets.
arXiv Detail & Related papers (2023-07-31T05:59:09Z) - Hierarchical Deep Counterfactual Regret Minimization [53.86223883060367]
In this paper, we introduce the first hierarchical version of Deep CFR, an innovative method that boosts learning efficiency in tasks involving extensively large state spaces and deep game trees.
A notable advantage of HDCFR over previous works is its ability to facilitate learning with predefined (human) expertise and foster the acquisition of skills that can be transferred to similar tasks.
arXiv Detail & Related papers (2023-05-27T02:05:41Z) - CoopInit: Initializing Generative Adversarial Networks via Cooperative
Learning [50.90384817689249]
CoopInit is a cooperative learning-based strategy that can quickly learn a good starting point for GANs.
We demonstrate the effectiveness of the proposed approach on image generation and one-sided unpaired image-to-image translation tasks.
arXiv Detail & Related papers (2023-03-21T07:49:32Z) - Hierarchically Structured Task-Agnostic Continual Learning [0.0]
We take a task-agnostic view of continual learning and develop a hierarchical information-theoretic optimality principle.
We propose a neural network layer, called the Mixture-of-Variational-Experts layer, that alleviates forgetting by creating a set of information processing paths.
Our approach can operate in a task-agnostic way, i.e., it does not require task-specific knowledge, as is the case with many existing continual learning algorithms.
arXiv Detail & Related papers (2022-11-14T19:53:15Z) - Implicit Offline Reinforcement Learning via Supervised Learning [83.8241505499762]
Offline Reinforcement Learning (RL) via Supervised Learning is a simple and effective way to learn robotic skills from a dataset collected by policies of different expertise levels.
We show how implicit models can leverage return information and match or outperform explicit algorithms to acquire robotic skills from fixed datasets.
arXiv Detail & Related papers (2022-10-21T21:59:42Z) - Visual-Language Navigation Pretraining via Prompt-based Environmental
Self-exploration [83.96729205383501]
We introduce prompt-based learning to achieve fast adaptation for language embeddings.
Our model can adapt to diverse vision-language navigation tasks, including VLN and REVERIE.
arXiv Detail & Related papers (2022-03-08T11:01:24Z) - Reinforcement Learning for Variable Selection in a Branch and Bound
Algorithm [0.10499611180329801]
We leverage patterns in real-world instances to learn from scratch a new branching strategy optimised for a given problem.
We propose FMSTS, a novel Reinforcement Learning approach specifically designed for this task.
arXiv Detail & Related papers (2020-05-20T13:15:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.