SPINEPS -- Automatic Whole Spine Segmentation of T2-weighted MR images using a Two-Phase Approach to Multi-class Semantic and Instance Segmentation
- URL: http://arxiv.org/abs/2402.16368v2
- Date: Mon, 22 Apr 2024 14:44:45 GMT
- Title: SPINEPS -- Automatic Whole Spine Segmentation of T2-weighted MR images using a Two-Phase Approach to Multi-class Semantic and Instance Segmentation
- Authors: Hendrik Möller, Robert Graf, Joachim Schmitt, Benjamin Keinert, Matan Atad, Anjany Sekuboyina, Felix Streckenbach, Hanna Schön, Florian Kofler, Thomas Kroencke, Stefanie Bette, Stefan Willich, Thomas Keil, Thoralf Niendorf, Tobias Pischon, Beate Endemann, Bjoern Menze, Daniel Rueckert, Jan S. Kirschke,
- Abstract summary: We present an open-source deep learning approach for semantic and instance segmentation of 14 spinal structures in T2w MRI images.
We used the SPIDER dataset (218 subjects, 63% female) and a subset of the German National Cohort (1423 subjects, mean age 53, 49% female) for training and evaluation.
Training on auto-generated annotations and evaluating on manually corrected test data from the GNC yielded global dice scores of 0.900 for vertebrae, 0.960 for intervertebral discs, and 0.947 for the spinal canal.
- Score: 6.931184815441744
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Purpose. To present SPINEPS, an open-source deep learning approach for semantic and instance segmentation of 14 spinal structures (ten vertebra substructures, intervertebral discs, spinal cord, spinal canal, and sacrum) in whole body T2w MRI. Methods. During this HIPPA-compliant, retrospective study, we utilized the public SPIDER dataset (218 subjects, 63% female) and a subset of the German National Cohort (1423 subjects, mean age 53, 49% female) for training and evaluation. We combined CT and T2w segmentations to train models that segment 14 spinal structures in T2w sagittal scans both semantically and instance-wise. Performance evaluation metrics included Dice similarity coefficient, average symmetrical surface distance, panoptic quality, segmentation quality, and recognition quality. Statistical significance was assessed using the Wilcoxon signed-rank test. An in-house dataset was used to qualitatively evaluate out-of-distribution samples. Results. On the public dataset, our approach outperformed the baseline (instance-wise vertebra dice score 0.929 vs. 0.907, p-value<0.001). Training on auto-generated annotations and evaluating on manually corrected test data from the GNC yielded global dice scores of 0.900 for vertebrae, 0.960 for intervertebral discs, and 0.947 for the spinal canal. Incorporating the SPIDER dataset during training increased these scores to 0.920, 0.967, 0.958, respectively. Conclusions. The proposed segmentation approach offers robust segmentation of 14 spinal structures in T2w sagittal images, including the spinal cord, spinal canal, intervertebral discs, endplate, sacrum, and vertebrae. The approach yields both a semantic and instance mask as output, thus being easy to utilize. This marks the first publicly available algorithm for whole spine segmentation in sagittal T2w MR imaging.
Related papers
- SpineFM: Leveraging Foundation Models for Automatic Spine X-ray Segmentation [0.0]
This paper introduces SpineFM, a novel pipeline that achieves state-of-the-art performance in the automatic segmentation and identification of vertebral bodies.
We achieved outstanding results on two publicly available spine X-Ray datasets, with successful identification of 97.8% and 99.6% of annotated vertebrae.
arXiv Detail & Related papers (2024-11-01T02:51:21Z) - TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
In this study we extended the capabilities of TotalSegmentator to MR images.
We trained an nnU-Net segmentation algorithm on this dataset and calculated similarity coefficients (Dice) to evaluate the model's performance.
The model significantly outperformed two other publicly available segmentation models (Dice score 0.824 versus 0.762; p0.001 and 0.762 versus 0.542; p)
arXiv Detail & Related papers (2024-05-29T20:15:54Z) - Lumbar spine segmentation in MR images: a dataset and a public benchmark [2.768537261519943]
This paper presents a large publicly available multi-center lumbar spine magnetic resonance imaging (MRI) dataset.
The dataset includes 447 sagittal T1 and T2 MRI series from 218 patients with a history of low back pain.
arXiv Detail & Related papers (2023-06-21T12:19:17Z) - VertXNet: An Ensemble Method for Vertebrae Segmentation and
Identification of Spinal X-Ray [3.7139410609392933]
VertXNet is an ensemble pipeline for automatically segmenting and labeling vertebrae in spinal X-ray images.
It combines two state-of-the-art (SOTA) segmentation models (respectively U-Net and Mask R-CNN) to automatically segment and label vertebrae in X-ray spinal images.
We evaluated the proposed pipeline on three spinal X-ray datasets (two internal and one publicly available), and compared against vertebrae annotated by radiologists.
arXiv Detail & Related papers (2023-02-07T14:01:32Z) - TotalSegmentator: robust segmentation of 104 anatomical structures in CT
images [48.50994220135258]
We present a deep learning segmentation model for body CT images.
The model can segment 104 anatomical structures relevant for use cases such as organ volumetry, disease characterization, and surgical or radiotherapy planning.
arXiv Detail & Related papers (2022-08-11T15:16:40Z) - Weakly-supervised Biomechanically-constrained CT/MRI Registration of the
Spine [72.85011943179894]
We propose a weakly-supervised deep learning framework that preserves the rigidity and the volume of each vertebra while maximizing the accuracy of the registration.
We specifically design these losses to depend only on the CT label maps since automatic vertebra segmentation in CT gives more accurate results contrary to MRI.
Our results show that adding the anatomy-aware losses increases the plausibility of the inferred transformation while keeping the accuracy untouched.
arXiv Detail & Related papers (2022-05-16T10:59:55Z) - Open source software for automatic subregional assessment of knee
cartilage degradation using quantitative T2 relaxometry and deep learning [0.0]
We trained a neural network to segment femoral cartilage from MESE MRIs.
Cartilage was divided into 12 subregions along medial-lateral, superficial-deep, and anterior-central-posterior boundaries.
arXiv Detail & Related papers (2020-12-22T23:08:41Z) - A Convolutional Approach to Vertebrae Detection and Labelling in Whole
Spine MRI [70.04389979779195]
We propose a novel convolutional method for the detection and identification of vertebrae in whole spine MRIs.
This involves using a learnt vector field to group detected vertebrae corners together into individual vertebral bodies.
We demonstrate the clinical applicability of this method, using it for automated scoliosis detection in both lumbar and whole spine MR scans.
arXiv Detail & Related papers (2020-07-06T09:37:12Z) - Appearance Learning for Image-based Motion Estimation in Tomography [60.980769164955454]
In tomographic imaging, anatomical structures are reconstructed by applying a pseudo-inverse forward model to acquired signals.
Patient motion corrupts the geometry alignment in the reconstruction process resulting in motion artifacts.
We propose an appearance learning approach recognizing the structures of rigid motion independently from the scanned object.
arXiv Detail & Related papers (2020-06-18T09:49:11Z) - Fully-automated deep learning slice-based muscle estimation from CT
images for sarcopenia assessment [0.10499611180329801]
This retrospective study was conducted using a collection of public and privately available CT images.
The method consisted of two stages: slice detection from a CT volume and single-slice CT segmentation.
The output consisted of a segmented muscle mass on a CT slice at the level of L3 vertebra.
arXiv Detail & Related papers (2020-06-10T12:05:55Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
Large Scale Vertebrae Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020.
We present the the results of this evaluation and further investigate the performance-variation at vertebra-level, scan-level, and at different fields-of-view.
arXiv Detail & Related papers (2020-01-24T21:09:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.