Two-stage Generative Question Answering on Temporal Knowledge Graph Using Large Language Models
- URL: http://arxiv.org/abs/2402.16568v2
- Date: Wed, 24 Jul 2024 01:44:05 GMT
- Title: Two-stage Generative Question Answering on Temporal Knowledge Graph Using Large Language Models
- Authors: Yifu Gao, Linbo Qiao, Zhigang Kan, Zhihua Wen, Yongquan He, Dongsheng Li,
- Abstract summary: This paper first proposes a novel generative temporal knowledge graph question answering framework, GenTKGQA.
First, we exploit LLM's intrinsic knowledge to mine temporal constraints and structural links in the questions without extra training.
Next, we design virtual knowledge indicators to fuse the graph neural network signals of the subgraph and the text representations of the LLM in a non-shallow way.
- Score: 24.417129499480975
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Temporal knowledge graph question answering (TKGQA) poses a significant challenge task, due to the temporal constraints hidden in questions and the answers sought from dynamic structured knowledge. Although large language models (LLMs) have made considerable progress in their reasoning ability over structured data, their application to the TKGQA task is a relatively unexplored area. This paper first proposes a novel generative temporal knowledge graph question answering framework, GenTKGQA, which guides LLMs to answer temporal questions through two phases: Subgraph Retrieval and Answer Generation. First, we exploit LLM's intrinsic knowledge to mine temporal constraints and structural links in the questions without extra training, thus narrowing down the subgraph search space in both temporal and structural dimensions. Next, we design virtual knowledge indicators to fuse the graph neural network signals of the subgraph and the text representations of the LLM in a non-shallow way, which helps the open-source LLM deeply understand the temporal order and structural dependencies among the retrieved facts through instruction tuning. Experimental results on two widely used datasets demonstrate the superiority of our model.
Related papers
- Debate on Graph: a Flexible and Reliable Reasoning Framework for Large Language Models [33.662269036173456]
Large Language Models (LLMs) may suffer from hallucinations in real-world applications due to the lack of relevant knowledge.
Knowledge Graph Question Answering (KGQA) serves as a critical touchstone for the integration.
We propose an interactive KGQA framework that leverages the interactive learning capabilities of LLMs to perform reasoning and Debating over Graphs (DoG)
arXiv Detail & Related papers (2024-09-05T01:11:58Z) - Prompting Large Language Models with Knowledge Graphs for Question Answering Involving Long-tail Facts [50.06633829833144]
Large Language Models (LLMs) are effective in performing various NLP tasks, but struggle to handle tasks that require extensive, real-world knowledge.
We propose a benchmark that requires knowledge of long-tail facts for answering the involved questions.
Our experiments show that LLMs alone struggle with answering these questions, especially when the long-tail level is high or rich knowledge is required.
arXiv Detail & Related papers (2024-05-10T15:10:20Z) - Self-Improvement Programming for Temporal Knowledge Graph Question Answering [31.33908040172437]
Temporal Knowledge Graph Question Answering (TKGQA) aims to answer questions with temporal intent over Temporal Knowledge Graphs (TKGs)
Existing end-to-end methods implicitly model the time constraints by learning time-aware embeddings of questions and candidate answers.
We introduce a novel self-improvement Programming method for TKGQA (Prog-TQA)
arXiv Detail & Related papers (2024-04-02T08:14:27Z) - Automatic Question-Answer Generation for Long-Tail Knowledge [65.11554185687258]
We propose an automatic approach to generate specialized QA datasets for tail entities.
We conduct extensive experiments by employing pretrained LLMs on our newly generated long-tail QA datasets.
arXiv Detail & Related papers (2024-03-03T03:06:31Z) - Context Matters: Pushing the Boundaries of Open-Ended Answer Generation with Graph-Structured Knowledge Context [4.1229332722825]
This paper introduces a novel framework that combines graph-driven context retrieval in conjunction to knowledge graphs based enhancement.
We conduct experiments on various Large Language Models (LLMs) with different parameter sizes to evaluate their ability to ground knowledge and determine factual accuracy in answers to open-ended questions.
Our methodology GraphContextGen consistently outperforms dominant text-based retrieval systems, demonstrating its robustness and adaptability to a larger number of use cases.
arXiv Detail & Related papers (2024-01-23T11:25:34Z) - Chain of History: Learning and Forecasting with LLMs for Temporal
Knowledge Graph Completion [24.545917737620197]
Temporal Knowledge Graph Completion (TKGC) is a complex task involving the prediction of missing event links at future timestamps.
This paper aims to provide a comprehensive perspective on harnessing the advantages of Large Language Models for reasoning in temporal knowledge graphs.
arXiv Detail & Related papers (2024-01-11T17:42:47Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
Large Language Models (LLMs) have exhibited impressive generation capabilities, but they suffer from hallucinations when relying on their internal knowledge.
Retrieval-augmented LLMs have emerged as a potential solution to ground LLMs in external knowledge.
arXiv Detail & Related papers (2023-10-31T04:37:57Z) - LLM4DyG: Can Large Language Models Solve Spatial-Temporal Problems on Dynamic Graphs? [56.85995048874959]
This paper proposes to evaluate Large Language Models' spatial-temporal understanding abilities on dynamic graphs.
We conduct experiments to analyze the impacts of different data generators, data statistics, prompting techniques, and LLMs on the model performance.
Finally, we propose Disentangled Spatial-Temporal Thoughts (DST2) for LLMs on dynamic graphs to enhance LLMs' spatial-temporal understanding abilities.
arXiv Detail & Related papers (2023-10-26T02:37:43Z) - Dual Semantic Knowledge Composed Multimodal Dialog Systems [114.52730430047589]
We propose a novel multimodal task-oriented dialog system named MDS-S2.
It acquires the context related attribute and relation knowledge from the knowledge base.
We also devise a set of latent query variables to distill the semantic information from the composed response representation.
arXiv Detail & Related papers (2023-05-17T06:33:26Z) - GreaseLM: Graph REASoning Enhanced Language Models for Question
Answering [159.9645181522436]
GreaseLM is a new model that fuses encoded representations from pretrained LMs and graph neural networks over multiple layers of modality interaction operations.
We show that GreaseLM can more reliably answer questions that require reasoning over both situational constraints and structured knowledge, even outperforming models 8x larger.
arXiv Detail & Related papers (2022-01-21T19:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.