Enhancing Continuous Domain Adaptation with Multi-Path Transfer Curriculum
- URL: http://arxiv.org/abs/2402.16681v2
- Date: Mon, 18 Mar 2024 07:10:46 GMT
- Title: Enhancing Continuous Domain Adaptation with Multi-Path Transfer Curriculum
- Authors: Hanbing Liu, Jingge Wang, Xuan Zhang, Ye Guo, Yang Li,
- Abstract summary: Continuous Domain Adaptation has emerged as an effective technique to close the distribution gap between training and testing data.
This paper contributes a novel method, W-MPOT, which rigorously addresses the domain ordering and error accumulation problems.
We extensively evaluate W-MPOT on multiple datasets, achieving up to 54.1% accuracy improvement on multi-session Alzheimer MR image classification and 94.7% MSE reduction on battery capacity estimation.
- Score: 8.712743055816958
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Addressing the large distribution gap between training and testing data has long been a challenge in machine learning, giving rise to fields such as transfer learning and domain adaptation. Recently, Continuous Domain Adaptation (CDA) has emerged as an effective technique, closing this gap by utilizing a series of intermediate domains. This paper contributes a novel CDA method, W-MPOT, which rigorously addresses the domain ordering and error accumulation problems overlooked by previous studies. Specifically, we construct a transfer curriculum over the source and intermediate domains based on Wasserstein distance, motivated by theoretical analysis of CDA. Then we transfer the source model to the target domain through multiple valid paths in the curriculum using a modified version of continuous optimal transport. A bidirectional path consistency constraint is introduced to mitigate the impact of accumulated mapping errors during continuous transfer. We extensively evaluate W-MPOT on multiple datasets, achieving up to 54.1\% accuracy improvement on multi-session Alzheimer MR image classification and 94.7\% MSE reduction on battery capacity estimation.
Related papers
- More is Better: Deep Domain Adaptation with Multiple Sources [34.26271755493111]
Multi-source domain adaptation (MDA) is a powerful and practical extension in which the labeled data may be collected from multiple sources with different distributions.
In this survey, we first define various MDA strategies. Then we systematically summarize and compare modern MDA methods in the deep learning era from different perspectives.
arXiv Detail & Related papers (2024-05-01T03:37:12Z) - Taxonomy Adaptive Cross-Domain Adaptation in Medical Imaging via
Optimization Trajectory Distillation [73.83178465971552]
The success of automated medical image analysis depends on large-scale and expert-annotated training sets.
Unsupervised domain adaptation (UDA) has been raised as a promising approach to alleviate the burden of labeled data collection.
We propose optimization trajectory distillation, a unified approach to address the two technical challenges from a new perspective.
arXiv Detail & Related papers (2023-07-27T08:58:05Z) - Joint Attention-Driven Domain Fusion and Noise-Tolerant Learning for
Multi-Source Domain Adaptation [2.734665397040629]
Multi-source Unsupervised Domain Adaptation transfers knowledge from multiple source domains with labeled data to an unlabeled target domain.
The distribution discrepancy between different domains and the noisy pseudo-labels in the target domain both lead to performance bottlenecks.
We propose an approach that integrates Attention-driven Domain fusion and Noise-Tolerant learning (ADNT) to address the two issues mentioned above.
arXiv Detail & Related papers (2022-08-05T01:08:41Z) - T-SVDNet: Exploring High-Order Prototypical Correlations for
Multi-Source Domain Adaptation [41.356774580308986]
We propose a novel approach named T-SVDNet to address the task of Multi-source Domain Adaptation.
High-order correlations among multiple domains and categories are fully explored so as to better bridge the domain gap.
To avoid negative transfer brought by noisy source data, we propose a novel uncertainty-aware weighting strategy.
arXiv Detail & Related papers (2021-07-30T06:33:05Z) - Gradual Domain Adaptation via Self-Training of Auxiliary Models [50.63206102072175]
Domain adaptation becomes more challenging with increasing gaps between source and target domains.
We propose self-training of auxiliary models (AuxSelfTrain) that learns models for intermediate domains.
Experiments on benchmark datasets of unsupervised and semi-supervised domain adaptation verify its efficacy.
arXiv Detail & Related papers (2021-06-18T03:15:25Z) - Dual-Teacher++: Exploiting Intra-domain and Inter-domain Knowledge with
Reliable Transfer for Cardiac Segmentation [69.09432302497116]
We propose a cutting-edge semi-supervised domain adaptation framework, namely Dual-Teacher++.
We design novel dual teacher models, including an inter-domain teacher model to explore cross-modality priors from source domain (e.g., MR) and an intra-domain teacher model to investigate the knowledge beneath unlabeled target domain.
In this way, the student model can obtain reliable dual-domain knowledge and yield improved performance on target domain data.
arXiv Detail & Related papers (2021-01-07T05:17:38Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
Partial domain adaptation (PDA) deals with a realistic and challenging problem when the source domain label space substitutes the target domain.
We propose an Adaptively-Accumulated Knowledge Transfer framework (A$2$KT) to align the relevant categories across two domains.
arXiv Detail & Related papers (2020-08-27T00:53:43Z) - Online Meta-Learning for Multi-Source and Semi-Supervised Domain
Adaptation [4.1799778475823315]
We propose a framework to enhance performance by meta-learning the initial conditions of existing DA algorithms.
We present variants for both multi-source unsupervised domain adaptation (MSDA), and semi-supervised domain adaptation (SSDA)
We achieve state of the art results on several DA benchmarks including the largest scale DomainNet.
arXiv Detail & Related papers (2020-04-09T07:48:22Z) - Multi-source Domain Adaptation in the Deep Learning Era: A Systematic
Survey [53.656086832255944]
Multi-source domain adaptation (MDA) is a powerful extension in which the labeled data may be collected from multiple sources.
MDA has attracted increasing attention in both academia and industry.
arXiv Detail & Related papers (2020-02-26T08:07:58Z) - MADAN: Multi-source Adversarial Domain Aggregation Network for Domain
Adaptation [58.38749495295393]
Domain adaptation aims to learn a transferable model to bridge the domain shift between one labeled source domain and another sparsely labeled or unlabeled target domain.
Recent multi-source domain adaptation (MDA) methods do not consider the pixel-level alignment between sources and target.
We propose a novel MDA framework to address these challenges.
arXiv Detail & Related papers (2020-02-19T21:22:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.