論文の概要: Video-Based Autism Detection with Deep Learning
- arxiv url: http://arxiv.org/abs/2402.16774v1
- Date: Mon, 26 Feb 2024 17:45:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-28 19:51:50.025923
- Title: Video-Based Autism Detection with Deep Learning
- Title(参考訳): ディープラーニングを用いたビデオベース自閉症検出
- Authors: M. Serna-Aguilera, X. B. Nguyen, A. Singh, L. Rockers, S. Park, L.
Neely, H. Seo, K. Luu
- Abstract要約: 感覚刺激に反応する子供の映像クリップを解析する深層学習モデルを開発した。
以上の結果から,本モデルでは患者の動きの相違点をよく理解することが可能であることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autism Spectrum Disorder (ASD) can often make life difficult for children,
therefore early diagnosis is necessary for proper treatment and care. Thus, in
this work, we consider the problem of detecting or classifying ASD in children
to aid medical professionals in early detection. To this end, we develop a deep
learning model that analyzes video clips of children reacting to sensory
stimuli, with the intent on capturing key differences in reactions and behavior
between ASD and non-ASD patients. Unlike many works in ASD classification,
their data consist of MRI data, which requires expensive specialized MRI
equipment, meanwhile our method need only rely on a powerful but relatively
cheaper GPU, a decent computer setup, and a video camera for inference. Results
on our data show that our model can generalize well and can understand key
differences in the distinct movements of the patients. This is despite limited
amounts of data for a deep learning problem, limited temporal information
available to the model as input, and even when there is noise due to movement.
- Abstract(参考訳): 自閉症スペクトラム障害 (ASD) はしばしば子どもの生活を困難にするため、適切な治療とケアのために早期診断が必要である。
そこで本研究では,子どものasdを早期発見支援のために検出・分類することの問題点について考察する。
そこで本研究では,asd患者と非asd患者の反応と行動の鍵となる違いを捉える目的で,感覚刺激に反応する子どものビデオクリップを分析する深層学習モデルを開発した。
asd分類の多くの作品とは異なり、彼らのデータは高価なmri装置を必要とするmriデータで構成されており、一方、この方法はパワフルで比較的安価なgpu、まともなコンピュータセットアップ、そして推論のためのビデオカメラのみに依存している。
以上の結果から,本モデルは十分に一般化でき,患者の動きにおける重要な違いを把握できることが示唆された。
これは、ディープラーニング問題のための限られた量のデータ、入力としてモデルに利用可能な時間的情報、そして動きによるノイズがある場合でもである。
関連論文リスト
- Hear Me, See Me, Understand Me: Audio-Visual Autism Behavior Recognition [47.550391816383794]
本稿では,音声・視覚自閉症の行動認識の新たな課題について紹介する。
社会的行動認識は、AIによる自閉症スクリーニング研究において、これまで省略されてきた重要な側面である。
データセット、コード、事前トレーニングされたモデルをリリースします。
論文 参考訳(メタデータ) (2024-03-22T22:52:35Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
本研究は, スマートフォンで撮影した画像と本質的な臨床および人口統計情報を統合することで, 皮膚病変を分類する新しいマルチモーダル手法を提案する。
この手法の特徴は、超高解像度画像予測に焦点を当てた補助的なタスクの統合である。
PAD-UFES20データセットを用いて,様々なディープラーニングアーキテクチャを用いて実験を行った。
論文 参考訳(メタデータ) (2024-02-16T05:16:20Z) - Comparison of Probabilistic Deep Learning Methods for Autism Detection [0.0]
自閉症スペクトラム障害(Autism Spectrum disorder、ASD)は、現在世界中で普及している神経発達障害の一つ。
この疾患の早期発見は、発症治療に役立ち、正常な生活を導くのに役立つ。
論文 参考訳(メタデータ) (2023-03-09T17:49:37Z) - Language-Assisted Deep Learning for Autistic Behaviors Recognition [13.200025637384897]
本稿では,視覚に基づく問題行動認識システムにおいて,従来の手法よりも高い精度で性能を向上できることを示す。
問題行動の種類毎に「自由利用」言語記述を取り入れた2分岐マルチモーダルディープラーニングフレームワークを提案する。
実験結果から,言語指導を付加することで,自閉症の行動認識タスクに明らかなパフォーマンス向上がもたらされることが示された。
論文 参考訳(メタデータ) (2022-11-17T02:58:55Z) - Vision-Based Activity Recognition in Children with Autism-Related
Behaviors [15.915410623440874]
臨床医や親が子どもの行動を分析するのに役立つ地域型コンピュータビジョンシステムの効果を実証する。
データは、ビデオ中の対象の子供を検出し、背景雑音の影響を低減することで前処理される。
時間的畳み込みモデルの有効性から,ビデオフレームから動作特徴を抽出できる軽量モデルと従来モデルの両方を提案する。
論文 参考訳(メタデータ) (2022-08-08T15:12:27Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
基礎画像における参照糖尿病網膜症検出のための機械学習システムを提案する。
画像パッチから局所情報を抽出し,アテンション機構により効率的に組み合わせることで,高い分類精度を実現することができる。
我々は,現在入手可能な網膜画像データセットに対するアプローチを評価し,最先端の性能を示す。
論文 参考訳(メタデータ) (2021-03-02T13:14:15Z) - Early Autism Spectrum Disorders Diagnosis Using Eye-Tracking Technology [62.997667081978825]
資金不足、資格のある専門家の欠如、そして修正方法に対する信頼度の低いことが、AMDのリアルタイム診断に影響を及ぼす主要な問題である。
我々のチームは、子どもの視線活動の情報に基づいて、ALDの確率を予測するアルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-08-21T20:22:55Z) - A Smartphone-based System for Real-time Early Childhood Caries Diagnosis [76.71303610807156]
6歳未満の小児では, 乳児期チャイナリー (ECC) が最も多いが, 予防可能な慢性疾患である。
本研究では,キャビティ検出のための多段階深層学習システムを提案する。
我々は、ディープラーニングシステムを、早期からECCを診断し、トレーニングされていないユーザにリアルタイムな結果を提供する、使い易いモバイルアプリケーションに統合する。
論文 参考訳(メタデータ) (2020-08-17T21:11:19Z) - A Convolutional Neural Network for gaze preference detection: A
potential tool for diagnostics of autism spectrum disorder in children [0.0]
本稿では,1分間の刺激映像から抽出した画像を用いた視線予測のための畳み込みニューラルネットワーク(CNN)アルゴリズムを提案する。
本モデルでは,被検者の視線方向の予測に高い精度とロバスト性を実現した。
論文 参考訳(メタデータ) (2020-07-28T18:47:21Z) - 4D Spatio-Temporal Deep Learning with 4D fMRI Data for Autism Spectrum
Disorder Classification [69.62333053044712]
ASD分類のための4次元畳み込み深層学習手法を提案する。
F1スコアは0.71、F1スコアは0.65であるのに対し、我々は4Dニューラルネットワークと畳み込みリカレントモデルを採用する。
論文 参考訳(メタデータ) (2020-04-21T17:19:06Z) - Explainable and Scalable Machine-Learning Algorithms for Detection of
Autism Spectrum Disorder using fMRI Data [0.2578242050187029]
提案した深層学習モデル ASD-DiagNet は神経型スキャンから ASD の脳スキャンの分類に一貫した精度を示す。
我々の手法はAuto-ASD-Networkと呼ばれ、ディープラーニングとサポートベクトルマシン(SVM)を組み合わせて、ニューロタイプスキャンからASDスキャンを分類する。
論文 参考訳(メタデータ) (2020-03-02T18:20:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。