論文の概要: Expressive Whole-Body Control for Humanoid Robots
- arxiv url: http://arxiv.org/abs/2402.16796v2
- Date: Wed, 6 Mar 2024 02:19:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-07 17:11:54.701869
- Title: Expressive Whole-Body Control for Humanoid Robots
- Title(参考訳): ヒューマノイドロボットの表現型全身制御
- Authors: Xuxin Cheng, Yandong Ji, Junming Chen, Ruihan Yang, Ge Yang, Xiaolong
Wang
- Abstract要約: 我々は、人間の動きをできるだけリアルに模倣するために、人間サイズのロボットで全身制御ポリシーを学習する。
シミュレーションとSim2Real転送のトレーニングにより、私たちのポリシーはヒューマノイドロボットを制御して、さまざまなスタイルで歩いたり、人と握手したり、現実世界で人間と踊ったりできる。
- 参考スコア(独自算出の注目度): 20.132927075816742
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Can we enable humanoid robots to generate rich, diverse, and expressive
motions in the real world? We propose to learn a whole-body control policy on a
human-sized robot to mimic human motions as realistic as possible. To train
such a policy, we leverage the large-scale human motion capture data from the
graphics community in a Reinforcement Learning framework. However, directly
performing imitation learning with the motion capture dataset would not work on
the real humanoid robot, given the large gap in degrees of freedom and physical
capabilities. Our method Expressive Whole-Body Control (Exbody) tackles this
problem by encouraging the upper humanoid body to imitate a reference motion,
while relaxing the imitation constraint on its two legs and only requiring them
to follow a given velocity robustly. With training in simulation and Sim2Real
transfer, our policy can control a humanoid robot to walk in different styles,
shake hands with humans, and even dance with a human in the real world. We
conduct extensive studies and comparisons on diverse motions in both simulation
and the real world to show the effectiveness of our approach.
- Abstract(参考訳): 人間型ロボットが現実世界で豊かで多様で表現力のある動きを生成できるだろうか?
人間の動きを可能な限りリアルに再現するために,人間サイズのロボットの全身制御方針を学習することを提案する。
このようなポリシーをトレーニングするために,強化学習フレームワークにおいて,グラフィックコミュニティからの大規模ヒューマンモーションキャプチャデータを活用する。
しかし、モーションキャプチャデータセットによる模倣学習は、自由度と物理的能力のギャップが大きいため、実際のヒューマノイドロボットでは機能しない。
本手法は,両脚の模倣制約を緩和し,与えられた速度を頑健に追従することのみを要求しながら,上半身の人体に基準運動を模倣するよう促すことで,全身制御(exbody)を表現し,この問題に対処している。
シミュレーションとSim2Real転送のトレーニングにより、私たちのポリシーはヒューマノイドロボットを制御して、さまざまなスタイルで歩いたり、人と握手したり、現実世界で人間と踊ったりできる。
本手法の有効性を示すため,シミュレーションと実世界の両方における多様な動きに関する広範な研究と比較を行った。
関連論文リスト
- HumanPlus: Humanoid Shadowing and Imitation from Humans [82.47551890765202]
ヒューマノイドが人間のデータから動きや自律的なスキルを学ぶためのフルスタックシステムを導入する。
まず、既存の40時間動作データセットを用いて、強化学習によるシミュレーションの低レベルポリシーを訓練する。
次に、自己中心型視覚を用いてスキルポリシーを訓練し、ヒューマノイドが自律的に異なるタスクを完了できるようにする。
論文 参考訳(メタデータ) (2024-06-15T00:41:34Z) - HumanoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation [50.616995671367704]
そこで本研究では,人型ロボットが器用な手を備えた,高次元シミュレーション型ロボット学習ベンチマークHumanoidBenchを提案する。
その結果,現在最先端の強化学習アルゴリズムがほとんどのタスクに支障をきたすのに対して,階層的学習アプローチはロバストな低レベルポリシーに支えられた場合,優れた性能を達成できることがわかった。
論文 参考訳(メタデータ) (2024-03-15T17:45:44Z) - Learning Human-to-Humanoid Real-Time Whole-Body Teleoperation [34.65637397405485]
本稿では,Human to Humanoid(H2O)について紹介する。H2Oは,RGBカメラのみを搭載したヒューマノイドロボットのリアルタイム遠隔操作を実現するフレームワークである。
我々は、これらの洗練された動きを用いてシミュレーションで頑健なリアルタイムヒューマノイド運動模倣機を訓練し、実ヒューマノイドロボットにゼロショットで転送する。
私たちの知る限りでは、学習に基づくリアルタイムな人型ロボット遠隔操作を実現する最初のデモとなる。
論文 参考訳(メタデータ) (2024-03-07T12:10:41Z) - SynH2R: Synthesizing Hand-Object Motions for Learning Human-to-Robot
Handovers [37.49601724575655]
視覚に基づく人間とロボットのハンドオーバは、人間とロボットのインタラクションにおいて重要かつ困難なタスクである。
本稿では,ロボットの訓練に適した人間のつかみ動作を生成するためのフレームワークを提案する。
これにより、以前の作業よりも100倍多くのオブジェクトで、総合的なトレーニングとテストデータを生成することができます。
論文 参考訳(メタデータ) (2023-11-09T18:57:02Z) - Universal Humanoid Motion Representations for Physics-Based Control [71.46142106079292]
物理学に基づくヒューマノイド制御のための総合的な運動スキルを含む普遍的な運動表現を提案する。
まず、大きな非構造運動データセットから人間の動きをすべて模倣できる動き模倣機を学習する。
次に、模倣者から直接スキルを蒸留することで、動作表現を作成します。
論文 参考訳(メタデータ) (2023-10-06T20:48:43Z) - Learning Human-to-Robot Handovers from Point Clouds [63.18127198174958]
視覚に基づく人間ロボットハンドオーバの制御ポリシーを学習する最初のフレームワークを提案する。
シミュレーションベンチマーク,sim-to-sim転送,sim-to-real転送において,ベースラインよりも大きな性能向上を示した。
論文 参考訳(メタデータ) (2023-03-30T17:58:36Z) - Real-World Humanoid Locomotion with Reinforcement Learning [92.85934954371099]
実世界におけるヒューマノイド移動に対する完全学習型アプローチを提案する。
コントローラーは様々な屋外の地形の上を歩けるし、外乱に対して頑丈で、状況に応じて適応できる。
論文 参考訳(メタデータ) (2023-03-06T18:59:09Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
本研究では,マイクロ進化的強化学習を用いて,操作スキルを人間からロボットに伝達可能であることを示す。
本稿では,ロボットの進化経路とポリシーを協調的に最適化する多次元進化経路探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-08T15:56:13Z) - Learning Bipedal Robot Locomotion from Human Movement [0.791553652441325]
本研究では、実世界の二足歩行ロボットに、モーションキャプチャーデータから直接の動きを教えるための強化学習に基づく手法を提案する。
本手法は,シミュレーション環境下でのトレーニングから,物理ロボット上での実行へシームレスに移行する。
本研究では,ダイナミックウォークサイクルから複雑なバランスや手振りに至るまでの動作を内製したヒューマノイドロボットについて実演する。
論文 参考訳(メタデータ) (2021-05-26T00:49:37Z) - Residual Force Control for Agile Human Behavior Imitation and Extended
Motion Synthesis [32.22704734791378]
強化学習は、モーションキャプチャーデータからヒューマノイド制御ポリシーを学習することで、現実的な人間の行動に大きな可能性を示してきた。
バレエダンスのような洗練された人間のスキルを再現することや、複雑な移行を伴う長期的な人間の振る舞いを安定して模倣することは、依然として非常に困難である。
動作空間に外部残留力を加えることでヒューマノイド制御ポリシーを強化する新しいアプローチである残留力制御(RFC)を提案する。
論文 参考訳(メタデータ) (2020-06-12T17:56:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。