Convolutional Neural Operators for robust and accurate learning of PDEs
- URL: http://arxiv.org/abs/2302.01178v3
- Date: Fri, 1 Dec 2023 21:23:27 GMT
- Title: Convolutional Neural Operators for robust and accurate learning of PDEs
- Authors: Bogdan Raoni\'c, Roberto Molinaro, Tim De Ryck, Tobias Rohner,
Francesca Bartolucci, Rima Alaifari, Siddhartha Mishra, Emmanuel de B\'ezenac
- Abstract summary: We present novel adaptations for convolutional neural networks to process functions as inputs and outputs.
The resulting architecture is termed as convolutional neural operators (CNOs)
We prove a universality theorem to show that CNOs can approximate operators arising in PDEs to desired accuracy.
- Score: 11.562748612983956
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although very successfully used in conventional machine learning, convolution
based neural network architectures -- believed to be inconsistent in function
space -- have been largely ignored in the context of learning solution
operators of PDEs. Here, we present novel adaptations for convolutional neural
networks to demonstrate that they are indeed able to process functions as
inputs and outputs. The resulting architecture, termed as convolutional neural
operators (CNOs), is designed specifically to preserve its underlying
continuous nature, even when implemented in a discretized form on a computer.
We prove a universality theorem to show that CNOs can approximate operators
arising in PDEs to desired accuracy. CNOs are tested on a novel suite of
benchmarks, encompassing a diverse set of PDEs with possibly multi-scale
solutions and are observed to significantly outperform baselines, paving the
way for an alternative framework for robust and accurate operator learning. Our
code is publicly available at
https://github.com/bogdanraonic3/ConvolutionalNeuralOperator
Related papers
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
We introduce DimOL (Dimension-aware Operator Learning), drawing insights from dimensional analysis.
To implement DimOL, we propose the ProdLayer, which can be seamlessly integrated into FNO-based and Transformer-based PDE solvers.
Empirically, DimOL models achieve up to 48% performance gain within the PDE datasets.
arXiv Detail & Related papers (2024-10-08T10:48:50Z) - Neural Operators with Localized Integral and Differential Kernels [77.76991758980003]
We present a principled approach to operator learning that can capture local features under two frameworks.
We prove that we obtain differential operators under an appropriate scaling of the kernel values of CNNs.
To obtain local integral operators, we utilize suitable basis representations for the kernels based on discrete-continuous convolutions.
arXiv Detail & Related papers (2024-02-26T18:59:31Z) - GIT-Net: Generalized Integral Transform for Operator Learning [58.13313857603536]
This article introduces GIT-Net, a deep neural network architecture for approximating Partial Differential Equation (PDE) operators.
GIT-Net harnesses the fact that differential operators commonly used for defining PDEs can often be represented parsimoniously when expressed in specialized functional bases.
Numerical experiments demonstrate that GIT-Net is a competitive neural network operator, exhibiting small test errors and low evaluations across a range of PDE problems.
arXiv Detail & Related papers (2023-12-05T03:03:54Z) - A foundational neural operator that continuously learns without
forgetting [1.0878040851638]
We introduce the concept of the Neural Combinatorial Wavelet Neural Operator (NCWNO) as a foundational model for scientific computing.
The NCWNO is specifically designed to excel in learning from a diverse spectrum of physics and continuously adapt to the solution operators associated with parametric partial differential equations (PDEs)
The proposed foundational model offers two key advantages: (i) it can simultaneously learn solution operators for multiple parametric PDEs, and (ii) it can swiftly generalize to new parametric PDEs with minimal fine-tuning.
arXiv Detail & Related papers (2023-10-29T03:20:10Z) - Resolution-Invariant Image Classification based on Fourier Neural
Operators [1.3190581566723918]
We investigate the use of generalization Neural Operators (FNOs) for image classification in comparison to standard Convolutional Neural Networks (CNNs)
We derive the FNO architecture as an example for continuous and Fr'echet-differentiable neural operators on Lebesgue spaces.
arXiv Detail & Related papers (2023-04-02T10:23:36Z) - DOSnet as a Non-Black-Box PDE Solver: When Deep Learning Meets Operator
Splitting [12.655884541938656]
We develop a learning-based PDE solver, which we name Deep Operator-Splitting Network (DOSnet)
DOSnet is constructed from the physical rules and operators governing the underlying dynamics contains learnable parameters.
We train and validate it on several types of operator-decomposable differential equations.
arXiv Detail & Related papers (2022-12-11T18:23:56Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Nonlocal Kernel Network (NKN): a Stable and Resolution-Independent Deep
Neural Network [23.465930256410722]
Nonlocal kernel network (NKN) is resolution independent, characterized by deep neural networks.
NKN is capable of handling a variety of tasks such as learning governing equations and classifying images.
arXiv Detail & Related papers (2022-01-06T19:19:35Z) - Neural Operator: Learning Maps Between Function Spaces [75.93843876663128]
We propose a generalization of neural networks to learn operators, termed neural operators, that map between infinite dimensional function spaces.
We prove a universal approximation theorem for our proposed neural operator, showing that it can approximate any given nonlinear continuous operator.
An important application for neural operators is learning surrogate maps for the solution operators of partial differential equations.
arXiv Detail & Related papers (2021-08-19T03:56:49Z) - Self-Organized Operational Neural Networks with Generative Neurons [87.32169414230822]
ONNs are heterogenous networks with a generalized neuron model that can encapsulate any set of non-linear operators.
We propose Self-organized ONNs (Self-ONNs) with generative neurons that have the ability to adapt (optimize) the nodal operator of each connection.
arXiv Detail & Related papers (2020-04-24T14:37:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.