論文の概要: Large Language Model Augmented Exercise Retrieval for Personalized
Language Learning
- arxiv url: http://arxiv.org/abs/2402.16877v1
- Date: Thu, 8 Feb 2024 20:35:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-03 19:21:31.822203
- Title: Large Language Model Augmented Exercise Retrieval for Personalized
Language Learning
- Title(参考訳): パーソナライズされた言語学習のための大規模言語モデル拡張型エクササイズ検索
- Authors: Austin Xu, Will Monroe, Klinton Bicknell
- Abstract要約: ベクトル類似性アプローチは,学習者が学習したいことを表現するために使用するエクササイズコンテンツと言語との関係を,不十分に捉えていることがわかった。
我々は,学習者の入力に基づいて仮説的演習を合成することにより,大きな言語モデルの生成能力を活用してギャップを埋める。
我々はmHyERと呼ぶアプローチを,(1)学習における関連ラベルの欠如,(2)制限なし学習者の入力内容,(3)入力候補と検索候補とのセマンティックな類似性の低さという3つの課題を克服する。
- 参考スコア(独自算出の注目度): 2.946562343070891
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the problem of zero-shot exercise retrieval in the context of online
language learning, to give learners the ability to explicitly request
personalized exercises via natural language. Using real-world data collected
from language learners, we observe that vector similarity approaches poorly
capture the relationship between exercise content and the language that
learners use to express what they want to learn. This semantic gap between
queries and content dramatically reduces the effectiveness of general-purpose
retrieval models pretrained on large scale information retrieval datasets like
MS MARCO. We leverage the generative capabilities of large language models to
bridge the gap by synthesizing hypothetical exercises based on the learner's
input, which are then used to search for relevant exercises. Our approach,
which we call mHyER, overcomes three challenges: (1) lack of relevance labels
for training, (2) unrestricted learner input content, and (3) low semantic
similarity between input and retrieval candidates. mHyER outperforms several
strong baselines on two novel benchmarks created from crowdsourced data and
publicly available data.
- Abstract(参考訳): 本研究では,オンライン学習におけるゼロショットエクササイズ検索の問題点を考察し,学習者が自然言語を介して個別のエクササイズを明示的に要求できる能力を提供する。
言語学習者から収集された実世界のデータを用いて、ベクトル類似性アプローチは、学習者が学習したいことを表現するために使用するエクササイズコンテンツと言語との関係をうまく捉えていないことを観察する。
このクエリとコンテンツ間のセマンティックなギャップは、MS MARCOのような大規模情報検索データセットで事前訓練された汎用検索モデルの有効性を劇的に低下させる。
学習者の入力に基づいて仮説的なエクササイズを合成し,関連するエクササイズを探索することで,大きな言語モデルの生成能力を活用してギャップを橋渡しする。
我々はmHyERと呼ぶアプローチを,(1)学習における関連ラベルの欠如,(2)制限なし学習者の入力内容,(3)入力候補と検索候補とのセマンティックな類似性の低さという3つの課題を克服する。
mHyERは、クラウドソースデータと公開データから生成された2つの新しいベンチマークで、いくつかの強力なベースラインを上回ります。
関連論文リスト
- Less is More: A Closer Look at Semantic-based Few-Shot Learning [11.724194320966959]
Few-shot Learningは、利用可能な画像の数が非常に限られている新しいカテゴリを学習し、区別することを目的としている。
本稿では,テキスト情報と言語モデルを活用することを目的とした,数ショットの学習タスクのための,シンプルだが効果的なフレームワークを提案する。
広範に使われている4つのショットデータセットで実施した実験は、我々の単純なフレームワークが印象的な結果をもたらすことを示した。
論文 参考訳(メタデータ) (2024-01-10T08:56:02Z) - Blending Reward Functions via Few Expert Demonstrations for Faithful and
Accurate Knowledge-Grounded Dialogue Generation [22.38338205905379]
我々は、新しい報酬関数を導入することで上記の課題を克服するために強化学習アルゴリズムを活用する。
我々の報奨関数は、精度測定値と忠実度測定値を組み合わせて、生成された応答のバランスの取れた品質判定を提供する。
論文 参考訳(メタデータ) (2023-11-02T02:42:41Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
本稿では,インスタンスを条件付きで符号化するためのフレキシブルガイダンスとして,コンテキスト的にプロンプトを検索するXLM-Pを提案する。
我々のXLM-Pは、(1)言語間における言語不変および言語固有知識の軽量なモデリングを可能にし、(2)他の多言語事前学習手法との容易な統合を可能にする。
論文 参考訳(メタデータ) (2023-06-13T08:08:08Z) - BRENT: Bidirectional Retrieval Enhanced Norwegian Transformer [1.911678487931003]
検索ベースの言語モデルは、質問応答タスクにますます採用されている。
我々はREALMフレームワークを適用し,ノルウェー初の検索モデルを開発した。
本研究では,このような学習により,抽出質問応答における読み手のパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2023-04-19T13:40:47Z) - Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
本稿では,多言語テキスト埋め込み学習のための生成モデルを提案する。
我々のモデルは、$N$言語で並列データを操作する。
本手法は, 意味的類似性, ビットクストマイニング, 言語間質問検索などを含む一連のタスクに対して評価を行う。
論文 参考訳(メタデータ) (2022-12-21T02:41:40Z) - Language Model Pre-Training with Sparse Latent Typing [66.75786739499604]
そこで本研究では,多種多様な潜在型を持つ文レベルのキーワードを疎に抽出することのできる,事前学習対象Sparse Latent Typingを提案する。
実験結果から,本モデルは外部知識を使わずに,自己教師型で解釈可能な潜在型カテゴリを学習できることが示唆された。
論文 参考訳(メタデータ) (2022-10-23T00:37:08Z) - An Attention-Based Model for Predicting Contextual Informativeness and
Curriculum Learning Applications [11.775048147405725]
文の指導的側面に着目し,文脈的情報度を推定するモデルを構築した。
対象単語に対する読者の理解に最も寄与する可能性のある文中の重要な文脈要素を,我々のモデルがいかに認識するかを示す。
我々は,人間と機械の学習者の両方に言語学習をサポートするアプリケーションに対して,新たな可能性を開くと信じている。
論文 参考訳(メタデータ) (2022-04-21T05:17:49Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
低リソース言語に対する正規化の推進は、パターンの予測が難しいため、難しい作業である。
この研究は、ターゲット言語データに様々な量を持つニューラルモデルとキャラクタ言語モデルの比較を示す。
我々の利用シナリオは、ほぼゼロのトレーニング例によるインタラクティブな修正であり、より多くのデータが収集されるにつれてモデルを改善する。
論文 参考訳(メタデータ) (2020-10-20T17:31:07Z) - Adversarial Training for Code Retrieval with Question-Description
Relevance Regularization [34.29822107097347]
入力問題から難しいコードスニペットを生成するために,簡単な逆学習手法を適用した。
本稿では,逆学習の規則化に質問記述の関連性を活用することを提案する。
我々の対角学習法は,最先端モデルの性能を向上させることができる。
論文 参考訳(メタデータ) (2020-10-19T19:32:03Z) - ALICE: Active Learning with Contrastive Natural Language Explanations [69.03658685761538]
本研究では,学習におけるデータ効率を向上させるために,AlICEを用いたアクティブラーニングを提案する。
ALICEは、まずアクティブラーニングを使用して、最も情報に富んだラベルクラスを選択し、対照的な自然言語の説明を引き出す。
意味的に抽出された知識を用いて、これらの説明から知識を抽出する。
論文 参考訳(メタデータ) (2020-09-22T01:02:07Z) - Leveraging Adversarial Training in Self-Learning for Cross-Lingual Text
Classification [52.69730591919885]
本稿では,ラベル保存型入力摂動の最大損失を最小限に抑える半教師付き対向学習法を提案する。
多様な言語群に対する文書分類と意図分類において,有効性が著しく向上するのを観察する。
論文 参考訳(メタデータ) (2020-07-29T19:38:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。