Artificial Intelligence for Complex Network: Potential, Methodology and
Application
- URL: http://arxiv.org/abs/2402.16887v1
- Date: Fri, 23 Feb 2024 09:06:36 GMT
- Title: Artificial Intelligence for Complex Network: Potential, Methodology and
Application
- Authors: Jingtao Ding, Chang Liu, Yu Zheng, Yunke Zhang, Zihan Yu, Ruikun Li,
Hongyi Chen, Jinghua Piao, Huandong Wang, Jiazhen Liu and Yong Li
- Abstract summary: Complex network science has significantly enhanced our understanding of the statistical mechanics, structures, and dynamics underlying real-world networks.
The emergence of artificial intelligence (AI) technologies has heralded a new era in complex network science research.
This survey aims to systematically address the potential advantages of AI in overcoming the lingering challenges of complex network research.
- Score: 23.710627896950438
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Complex networks pervade various real-world systems, from the natural
environment to human societies. The essence of these networks is in their
ability to transition and evolve from microscopic disorder-where network
topology and node dynamics intertwine-to a macroscopic order characterized by
certain collective behaviors. Over the past two decades, complex network
science has significantly enhanced our understanding of the statistical
mechanics, structures, and dynamics underlying real-world networks. Despite
these advancements, there remain considerable challenges in exploring more
realistic systems and enhancing practical applications. The emergence of
artificial intelligence (AI) technologies, coupled with the abundance of
diverse real-world network data, has heralded a new era in complex network
science research. This survey aims to systematically address the potential
advantages of AI in overcoming the lingering challenges of complex network
research. It endeavors to summarize the pivotal research problems and provide
an exhaustive review of the corresponding methodologies and applications.
Through this comprehensive survey-the first of its kind on AI for complex
networks-we expect to provide valuable insights that will drive further
research and advancement in this interdisciplinary field.
Related papers
- Aligning Cyber Space with Physical World: A Comprehensive Survey on Embodied AI [129.08019405056262]
Embodied Artificial Intelligence (Embodied AI) is crucial for achieving Artificial Intelligence (AGI)
MLMs andWMs have attracted significant attention due to their remarkable perception, interaction, and reasoning capabilities.
In this survey, we give a comprehensive exploration of the latest advancements in Embodied AI.
arXiv Detail & Related papers (2024-07-09T14:14:47Z) - Towards Neural Architecture Search for Transfer Learning in 6G Networks [4.863212763542215]
We describe and review the state-of-the-art in Neural Architecture Search and Transfer Learning and their applicability in networking.
We identify open research challenges and set directions with a specific focus on three main requirements with elements unique to the future network.
arXiv Detail & Related papers (2024-06-04T14:01:03Z) - Large Language Models for Networking: Workflow, Advances and Challenges [19.104593453342304]
The networking field is characterized by its high complexity and rapid iteration.
Traditional machine learning-based methods struggle to generalize and automate complex tasks in networking.
The recent emergence of large language models (LLMs) has sparked a new wave of possibilities in addressing these challenges.
arXiv Detail & Related papers (2024-04-19T14:17:02Z) - Disentangling the Causes of Plasticity Loss in Neural Networks [55.23250269007988]
We show that loss of plasticity can be decomposed into multiple independent mechanisms.
We show that a combination of layer normalization and weight decay is highly effective at maintaining plasticity in a variety of synthetic nonstationary learning tasks.
arXiv Detail & Related papers (2024-02-29T00:02:33Z) - Causal Reasoning: Charting a Revolutionary Course for Next-Generation
AI-Native Wireless Networks [63.246437631458356]
Next-generation wireless networks (e.g., 6G) will be artificial intelligence (AI)-native.
This article introduces a novel framework for building AI-native wireless networks; grounded in the emerging field of causal reasoning.
We highlight several wireless networking challenges that can be addressed by causal discovery and representation.
arXiv Detail & Related papers (2023-09-23T00:05:39Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - From Cities to Series: Complex Networks and Deep Learning for Improved
Spatial and Temporal Analytics* [0.0]
This thesis puts together complex networks and machine learning techniques to improve the understanding of the human phenomena observed in pandemics, pendular migration, and street networks.
We contribute with: (i) a new neural network architecture capable of modeling dynamic processes observed in spatial and temporal data with applications in epidemics propagation, weather forecasting, and patient monitoring in intensive care units; (ii) a machine-learning methodology for analyzing and predicting links in the scope of human mobility between all the cities of Brazil.
arXiv Detail & Related papers (2022-06-01T11:04:11Z) - Collective Intelligence for Deep Learning: A Survey of Recent
Developments [11.247894240593691]
We will provide a historical context of neural network research's involvement with complex systems.
We will highlight several active areas in modern deep learning research that incorporate the principles of collective intelligence.
arXiv Detail & Related papers (2021-11-29T08:39:32Z) - Towards Understanding Theoretical Advantages of Complex-Reaction
Networks [77.34726150561087]
We show that a class of functions can be approximated by a complex-reaction network using the number of parameters.
For empirical risk minimization, our theoretical result shows that the critical point set of complex-reaction networks is a proper subset of that of real-valued networks.
arXiv Detail & Related papers (2021-08-15T10:13:49Z) - The Confluence of Networks, Games and Learning [26.435697087036218]
Emerging network applications call for game-theoretic models and learning-based approaches to create distributed network intelligence.
This paper articulates the confluence of networks, games and learning, which establishes a theoretical underpinning for understanding multi-agent decision-making over networks.
arXiv Detail & Related papers (2021-05-17T20:54:07Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
We use connections between deep neural networks and differential equations to design a family of deep network architectures for representing contact dynamics between objects.
We show that these networks can learn discontinuous contact events in a data-efficient manner from noisy observations.
Our results indicate that an idealised form of touch feedback is a key component of making this learning problem tractable.
arXiv Detail & Related papers (2021-02-22T17:33:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.