Large Language Models for Networking: Workflow, Advances and Challenges
- URL: http://arxiv.org/abs/2404.12901v2
- Date: Mon, 29 Apr 2024 04:46:13 GMT
- Title: Large Language Models for Networking: Workflow, Advances and Challenges
- Authors: Chang Liu, Xiaohui Xie, Xinggong Zhang, Yong Cui,
- Abstract summary: The networking field is characterized by its high complexity and rapid iteration.
Traditional machine learning-based methods struggle to generalize and automate complex tasks in networking.
The recent emergence of large language models (LLMs) has sparked a new wave of possibilities in addressing these challenges.
- Score: 19.104593453342304
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The networking field is characterized by its high complexity and rapid iteration, requiring extensive expertise to accomplish network tasks, ranging from network design, configuration, diagnosis and security. The inherent complexity of these tasks, coupled with the ever-changing landscape of networking technologies and protocols, poses significant hurdles for traditional machine learning-based methods. These methods often struggle to generalize and automate complex tasks in networking, as they require extensive labeled data, domain-specific feature engineering, and frequent retraining to adapt to new scenarios. However, the recent emergence of large language models (LLMs) has sparked a new wave of possibilities in addressing these challenges. LLMs have demonstrated remarkable capabilities in natural language understanding, generation, and reasoning. These models, trained on extensive data, can benefit the networking domain. Some efforts have already explored the application of LLMs in the networking domain and revealed promising results. By reviewing recent advances, we present an abstract workflow to describe the fundamental process involved in applying LLM for Networking. We introduce the highlights of existing works by category and explain in detail how they operate at different stages of the workflow. Furthermore, we delve into the challenges encountered, discuss potential solutions, and outline future research prospects. We hope that this survey will provide insight for researchers and practitioners, promoting the development of this interdisciplinary research field.
Related papers
- Federated Large Language Models: Current Progress and Future Directions [63.68614548512534]
This paper surveys Federated learning for LLMs (FedLLM), highlighting recent advances and future directions.
We focus on two key aspects: fine-tuning and prompt learning in a federated setting, discussing existing work and associated research challenges.
arXiv Detail & Related papers (2024-09-24T04:14:33Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases.
We introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning.
Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks.
arXiv Detail & Related papers (2024-06-19T00:28:58Z) - Towards Neural Architecture Search for Transfer Learning in 6G Networks [4.863212763542215]
We describe and review the state-of-the-art in Neural Architecture Search and Transfer Learning and their applicability in networking.
We identify open research challenges and set directions with a specific focus on three main requirements with elements unique to the future network.
arXiv Detail & Related papers (2024-06-04T14:01:03Z) - Can LLMs Understand Computer Networks? Towards a Virtual System Administrator [15.469010487781931]
This paper is the first to conduct an exhaustive study on Large Language Models' comprehension of computer networks.
We evaluate our framework on multiple computer networks employing proprietary (e.g., GPT4) and open-source (e.g., Llama2) models.
arXiv Detail & Related papers (2024-04-19T07:41:54Z) - A Survey of Neural Code Intelligence: Paradigms, Advances and Beyond [84.95530356322621]
This survey presents a systematic review of the advancements in code intelligence.
It covers over 50 representative models and their variants, more than 20 categories of tasks, and an extensive coverage of over 680 related works.
Building on our examination of the developmental trajectories, we further investigate the emerging synergies between code intelligence and broader machine intelligence.
arXiv Detail & Related papers (2024-03-21T08:54:56Z) - NetLLM: Adapting Large Language Models for Networking [36.61572542761661]
We present NetLLM, the first framework that provides a coherent design to harness the powerful capabilities of LLMs with low efforts to solve networking problems.
Specifically, NetLLM empowers the LLM to effectively process multimodal data in networking and efficiently generate task-specific answers.
arXiv Detail & Related papers (2024-02-04T04:21:34Z) - Large Language Models for Generative Information Extraction: A Survey [89.71273968283616]
Large Language Models (LLMs) have demonstrated remarkable capabilities in text understanding and generation.
We present an extensive overview by categorizing these works in terms of various IE subtasks and techniques.
We empirically analyze the most advanced methods and discover the emerging trend of IE tasks with LLMs.
arXiv Detail & Related papers (2023-12-29T14:25:22Z) - The Multiple Subnetwork Hypothesis: Enabling Multidomain Learning by
Isolating Task-Specific Subnetworks in Feedforward Neural Networks [0.0]
We identify a methodology and network representational structure which allows a pruned network to employ previously unused weights to learn subsequent tasks.
We show that networks trained using our approaches are able to learn multiple tasks, which may be related or unrelated, in parallel or in sequence without sacrificing performance on any task or exhibiting catastrophic forgetting.
arXiv Detail & Related papers (2022-07-18T15:07:13Z) - Neural Architecture Search for Dense Prediction Tasks in Computer Vision [74.9839082859151]
Deep learning has led to a rising demand for neural network architecture engineering.
neural architecture search (NAS) aims at automatically designing neural network architectures in a data-driven manner rather than manually.
NAS has become applicable to a much wider range of problems in computer vision.
arXiv Detail & Related papers (2022-02-15T08:06:50Z) - Curriculum Learning for Reinforcement Learning Domains: A Framework and
Survey [53.73359052511171]
Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks in which the agent has only limited environmental feedback.
We present a framework for curriculum learning (CL) in RL, and use it to survey and classify existing CL methods in terms of their assumptions, capabilities, and goals.
arXiv Detail & Related papers (2020-03-10T20:41:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.