Towards Understanding Theoretical Advantages of Complex-Reaction
Networks
- URL: http://arxiv.org/abs/2108.06711v1
- Date: Sun, 15 Aug 2021 10:13:49 GMT
- Title: Towards Understanding Theoretical Advantages of Complex-Reaction
Networks
- Authors: Shao-Qun Zhang, Gao Wei, Zhi-Hua Zhou
- Abstract summary: We show that a class of functions can be approximated by a complex-reaction network using the number of parameters.
For empirical risk minimization, our theoretical result shows that the critical point set of complex-reaction networks is a proper subset of that of real-valued networks.
- Score: 77.34726150561087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Complex-valued neural networks have attracted increasing attention in recent
years, while it remains open on the advantages of complex-valued neural
networks in comparison with real-valued networks. This work takes one step on
this direction by introducing the \emph{complex-reaction network} with
fully-connected feed-forward architecture. We prove the universal approximation
property for complex-reaction networks, and show that a class of radial
functions can be approximated by a complex-reaction network using the
polynomial number of parameters, whereas real-valued networks need at least
exponential parameters to reach the same approximation level. For empirical
risk minimization, our theoretical result shows that the critical point set of
complex-reaction networks is a proper subset of that of real-valued networks,
which may show some insights on finding the optimal solutions more easily for
complex-reaction networks.
Related papers
- Quantifying Emergence in Neural Networks: Insights from Pruning and Training Dynamics [0.0]
Emergence, where complex behaviors develop from the interactions of simpler components within a network, plays a crucial role in enhancing capabilities.
We introduce a quantitative framework to measure emergence during the training process and examine its impact on network performance.
Our hypothesis posits that the degree of emergence, defined by the connectivity between active and inactive nodes, can predict the development of emergent behaviors in the network.
arXiv Detail & Related papers (2024-09-03T03:03:35Z) - Riemannian Residual Neural Networks [58.925132597945634]
We show how to extend the residual neural network (ResNet)
ResNets have become ubiquitous in machine learning due to their beneficial learning properties, excellent empirical results, and easy-to-incorporate nature when building varied neural networks.
arXiv Detail & Related papers (2023-10-16T02:12:32Z) - Exploring the Complexity of Deep Neural Networks through Functional Equivalence [1.3597551064547502]
We present a novel bound on the covering number for deep neural networks, which reveals that the complexity of neural networks can be reduced.
We demonstrate that functional equivalence benefits optimization, as over parameterized networks tend to be easier to train since increasing network width leads to a diminishing volume of the effective parameter space.
arXiv Detail & Related papers (2023-05-19T04:01:27Z) - Generalization and Estimation Error Bounds for Model-based Neural
Networks [78.88759757988761]
We show that the generalization abilities of model-based networks for sparse recovery outperform those of regular ReLU networks.
We derive practical design rules that allow to construct model-based networks with guaranteed high generalization.
arXiv Detail & Related papers (2023-04-19T16:39:44Z) - Rank Diminishing in Deep Neural Networks [71.03777954670323]
Rank of neural networks measures information flowing across layers.
It is an instance of a key structural condition that applies across broad domains of machine learning.
For neural networks, however, the intrinsic mechanism that yields low-rank structures remains vague and unclear.
arXiv Detail & Related papers (2022-06-13T12:03:32Z) - The Principles of Deep Learning Theory [19.33681537640272]
This book develops an effective theory approach to understanding deep neural networks of practical relevance.
We explain how these effectively-deep networks learn nontrivial representations from training.
We show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks.
arXiv Detail & Related papers (2021-06-18T15:00:00Z) - Conceptual capacity and effective complexity of neural networks [0.7734726150561086]
We propose a complexity measure of a neural network mapping function based on the diversity of the set of tangent spaces from different inputs.
Treating each tangent space as a linear PAC concept we use an entropy-based measure of the bundle of concepts in order to estimate the conceptual capacity of the network.
arXiv Detail & Related papers (2021-03-13T04:32:59Z) - On reaction network implementations of neural networks [0.0]
This paper is concerned with the utilization of deterministically modeled chemical reaction networks for the implementation of (feed-forward) neural networks.
We develop a general mathematical framework and prove that the ordinary differential equations (ODEs) associated with certain reaction network implementations of neural networks have desirable properties.
arXiv Detail & Related papers (2020-10-26T02:37:26Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - Generalization bound of globally optimal non-convex neural network
training: Transportation map estimation by infinite dimensional Langevin
dynamics [50.83356836818667]
We introduce a new theoretical framework to analyze deep learning optimization with connection to its generalization error.
Existing frameworks such as mean field theory and neural tangent kernel theory for neural network optimization analysis typically require taking limit of infinite width of the network to show its global convergence.
arXiv Detail & Related papers (2020-07-11T18:19:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.