Generative Models are Self-Watermarked: Declaring Model Authentication
through Re-Generation
- URL: http://arxiv.org/abs/2402.16889v1
- Date: Fri, 23 Feb 2024 10:48:21 GMT
- Title: Generative Models are Self-Watermarked: Declaring Model Authentication
through Re-Generation
- Authors: Aditya Desu, Xuanli He, Qiongkai Xu, Wei Lu
- Abstract summary: verifying data ownership poses formidable challenges, particularly in cases of unauthorized reuse of generated data.
Our work is dedicated to detecting data reuse from even an individual sample.
We propose an explainable verification procedure that attributes data ownership through re-generation, and further amplifies these fingerprints in the generative models through iterative data re-generation.
- Score: 17.88043926057354
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As machine- and AI-generated content proliferates, protecting the
intellectual property of generative models has become imperative, yet verifying
data ownership poses formidable challenges, particularly in cases of
unauthorized reuse of generated data. The challenge of verifying data ownership
is further amplified by using Machine Learning as a Service (MLaaS), which
often functions as a black-box system.
Our work is dedicated to detecting data reuse from even an individual sample.
Traditionally, watermarking has been leveraged to detect AI-generated content.
However, unlike watermarking techniques that embed additional information as
triggers into models or generated content, potentially compromising output
quality, our approach identifies latent fingerprints inherently present within
the outputs through re-generation. We propose an explainable verification
procedure that attributes data ownership through re-generation, and further
amplifies these fingerprints in the generative models through iterative data
re-generation. This methodology is theoretically grounded and demonstrates
viability and robustness using recent advanced text and image generative
models. Our methodology is significant as it goes beyond protecting the
intellectual property of APIs and addresses important issues such as the spread
of misinformation and academic misconduct. It provides a useful tool to ensure
the integrity of sources and authorship, expanding its application in different
scenarios where authenticity and ownership verification are essential.
Related papers
- CAP: Detecting Unauthorized Data Usage in Generative Models via Prompt Generation [1.6141139250981018]
Copyright Audit via Prompts generation (CAP) is a framework for automatically testing whether an ML model has been trained with unauthorized data.
Specifically, we devise an approach to generate suitable keys inducing the model to reveal copyrighted contents.
To prove its effectiveness, we conducted an extensive evaluation campaign on measurements collected in four IoT scenarios.
arXiv Detail & Related papers (2024-10-08T08:49:41Z) - Unlearning Targeted Information via Single Layer Unlearning Gradient [15.374381635334897]
Unauthorized privacy-related computation is a significant concern for society.
The EU's General Protection Regulation includes a "right to be forgotten"
We propose Single Layer Unlearning Gradient (SLUG) to unlearn targeted information by updating targeted layers of a model.
arXiv Detail & Related papers (2024-07-16T15:52:36Z) - EnTruth: Enhancing the Traceability of Unauthorized Dataset Usage in Text-to-image Diffusion Models with Minimal and Robust Alterations [73.94175015918059]
We introduce a novel approach, EnTruth, which Enhances Traceability of unauthorized dataset usage.
By strategically incorporating the template memorization, EnTruth can trigger the specific behavior in unauthorized models as the evidence of infringement.
Our method is the first to investigate the positive application of memorization and use it for copyright protection, which turns a curse into a blessing.
arXiv Detail & Related papers (2024-06-20T02:02:44Z) - Detecting Generative Parroting through Overfitting Masked Autoencoders [2.6966307157568425]
Our research presents a novel approach to tackle this issue by employing an overfitted Masked Autoencoder (MAE)
We establish a detection threshold based on the mean loss across the training dataset, allowing for the precise identification of parroted content in modified datasets.
Preliminary evaluations demonstrate promising results, suggesting our method's potential to ensure ethical use and enhance the legal compliance of generative models.
arXiv Detail & Related papers (2024-03-27T23:10:33Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - A Watermark-Conditioned Diffusion Model for IP Protection [31.969286898467985]
We propose a unified watermarking framework for content copyright protection within the context of diffusion models.
To tackle this challenge, we propose a Watermark-conditioned Diffusion model called WaDiff.
Our method is effective and robust in both the detection and owner identification tasks.
arXiv Detail & Related papers (2024-03-16T11:08:15Z) - A Dataset and Benchmark for Copyright Infringement Unlearning from Text-to-Image Diffusion Models [52.49582606341111]
Copyright law confers creators the exclusive rights to reproduce, distribute, and monetize their creative works.
Recent progress in text-to-image generation has introduced formidable challenges to copyright enforcement.
We introduce a novel pipeline that harmonizes CLIP, ChatGPT, and diffusion models to curate a dataset.
arXiv Detail & Related papers (2024-01-04T11:14:01Z) - Model Stealing Attack against Graph Classification with Authenticity, Uncertainty and Diversity [80.16488817177182]
GNNs are vulnerable to the model stealing attack, a nefarious endeavor geared towards duplicating the target model via query permissions.
We introduce three model stealing attacks to adapt to different actual scenarios.
arXiv Detail & Related papers (2023-12-18T05:42:31Z) - Responsible Disclosure of Generative Models Using Scalable
Fingerprinting [70.81987741132451]
Deep generative models have achieved a qualitatively new level of performance.
There are concerns on how this technology can be misused to spoof sensors, generate deep fakes, and enable misinformation at scale.
Our work enables a responsible disclosure of such state-of-the-art generative models, that allows researchers and companies to fingerprint their models.
arXiv Detail & Related papers (2020-12-16T03:51:54Z) - Artificial Fingerprinting for Generative Models: Rooting Deepfake
Attribution in Training Data [64.65952078807086]
Photorealistic image generation has reached a new level of quality due to the breakthroughs of generative adversarial networks (GANs)
Yet, the dark side of such deepfakes, the malicious use of generated media, raises concerns about visual misinformation.
We seek a proactive and sustainable solution on deepfake detection by introducing artificial fingerprints into the models.
arXiv Detail & Related papers (2020-07-16T16:49:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.