Prompt Learning for Generalized Vehicle Routing
- URL: http://arxiv.org/abs/2405.12262v1
- Date: Mon, 20 May 2024 15:42:23 GMT
- Title: Prompt Learning for Generalized Vehicle Routing
- Authors: Fei Liu, Xi Lin, Weiduo Liao, Zhenkun Wang, Qingfu Zhang, Xialiang Tong, Mingxuan Yuan,
- Abstract summary: This work investigates an efficient prompt learning approach in Neural optimization for cross-distribution adaptation.
The proposed model learns a set of prompts among various distributions and then selects the best-matched one to prompt a pre-trained attention model for each problem instance.
It also outperforms existing generalized models on both in-distribution prediction and zero-shot generalization to a diverse set of new tasks.
- Score: 17.424910810870273
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural combinatorial optimization (NCO) is a promising learning-based approach to solving various vehicle routing problems without much manual algorithm design. However, the current NCO methods mainly focus on the in-distribution performance, while the real-world problem instances usually come from different distributions. A costly fine-tuning approach or generalized model retraining from scratch could be needed to tackle the out-of-distribution instances. Unlike the existing methods, this work investigates an efficient prompt learning approach in NCO for cross-distribution adaptation. To be concrete, we propose a novel prompt learning method to facilitate fast zero-shot adaptation of a pre-trained model to solve routing problem instances from different distributions. The proposed model learns a set of prompts among various distributions and then selects the best-matched one to prompt a pre-trained attention model for each problem instance. Extensive experiments show that the proposed prompt learning approach facilitates the fast adaptation of pre-trained routing models. It also outperforms existing generalized models on both in-distribution prediction and zero-shot generalization to a diverse set of new tasks. Our code implementation is available online https://github.com/FeiLiu36/PromptVRP.
Related papers
- Instance-Conditioned Adaptation for Large-scale Generalization of Neural Combinatorial Optimization [15.842155380912002]
This work proposes a novel Instance-Conditioned Adaptation Model (ICAM) for better large-scale generalization of neural optimization.
In particular, we design a powerful yet lightweight instance-conditioned Routing adaptation module for the NCO model.
We develop an efficient three-stage reinforcement learning-based training scheme that enables the model to learn cross-scale features without any labeled optimal solution.
arXiv Detail & Related papers (2024-05-03T08:00:19Z) - Multi-Task Learning for Routing Problem with Cross-Problem Zero-Shot Generalization [18.298695520665348]
Vehicle routing problems (VRPs) can be found in numerous real-world applications.
In this work, we make the first attempt to tackle the crucial challenge of cross-problem generalization.
Our proposed model can successfully solve VRPs with unseen attribute combinations in a zero-shot generalization manner.
arXiv Detail & Related papers (2024-02-23T13:25:23Z) - Self-regulating Prompts: Foundational Model Adaptation without
Forgetting [112.66832145320434]
We introduce a self-regularization framework for prompting called PromptSRC.
PromptSRC guides the prompts to optimize for both task-specific and task-agnostic general representations.
arXiv Detail & Related papers (2023-07-13T17:59:35Z) - Towards Omni-generalizable Neural Methods for Vehicle Routing Problems [14.210085924625705]
This paper studies a challenging yet realistic setting, which considers generalization across both size and distribution in VRPs.
We propose a generic meta-learning framework, which enables effective training of an model with the capability of fast adaptation to new tasks during inference.
arXiv Detail & Related papers (2023-05-31T06:14:34Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
Permutation flow shop scheduling (PFSS) is widely used in manufacturing systems.
We propose to train the model via expert-driven imitation learning, which accelerates convergence more stably and accurately.
Our model's network parameters are reduced to only 37% of theirs, and the solution gap of our model towards the expert solutions decreases from 6.8% to 1.3% on average.
arXiv Detail & Related papers (2022-10-31T09:46:26Z) - Sample-Efficient, Exploration-Based Policy Optimisation for Routing
Problems [2.6782615615913348]
This paper presents a new reinforcement learning approach that is based on entropy.
In addition, we design an off-policy-based reinforcement learning technique that maximises the expected return.
We show that our model can generalise to various route problems.
arXiv Detail & Related papers (2022-05-31T09:51:48Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
Three simple ideas allow us to train models with DRO using a broader class of parametric likelihood ratios.
We find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO approaches.
arXiv Detail & Related papers (2022-04-13T12:43:12Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
We present a method for learning multiple models, incorporating an objective that pressures each to learn a distinct way to solve the task.
We demonstrate our framework's ability to facilitate rapid adaptation to distribution shift.
arXiv Detail & Related papers (2020-06-12T12:23:50Z) - Auto-Ensemble: An Adaptive Learning Rate Scheduling based Deep Learning
Model Ensembling [11.324407834445422]
This paper proposes Auto-Ensemble (AE) to collect checkpoints of deep learning model and ensemble them automatically.
The advantage of this method is to make the model converge to various local optima by scheduling the learning rate in once training.
arXiv Detail & Related papers (2020-03-25T08:17:31Z) - Deep Unfolding Network for Image Super-Resolution [159.50726840791697]
This paper proposes an end-to-end trainable unfolding network which leverages both learning-based methods and model-based methods.
The proposed network inherits the flexibility of model-based methods to super-resolve blurry, noisy images for different scale factors via a single model.
arXiv Detail & Related papers (2020-03-23T17:55:42Z) - Side-Tuning: A Baseline for Network Adaptation via Additive Side
Networks [95.51368472949308]
Adaptation can be useful in cases when training data is scarce, or when one wishes to encode priors in the network.
In this paper, we propose a straightforward alternative: side-tuning.
arXiv Detail & Related papers (2019-12-31T18:52:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.