Synthesizing Tight Privacy and Accuracy Bounds via Weighted Model Counting
- URL: http://arxiv.org/abs/2402.16982v3
- Date: Tue, 01 Oct 2024 17:45:37 GMT
- Title: Synthesizing Tight Privacy and Accuracy Bounds via Weighted Model Counting
- Authors: Lisa Oakley, Steven Holtzen, Alina Oprea,
- Abstract summary: Two core challenges are finding expressive, compact, and efficient encodings of distributions of DP algorithms.
We address the first challenge by developing a method for tight privacy and accuracy bound synthesis.
We develop a framework for leveraging inherent symmetries in DP algorithms.
- Score: 5.552645730505715
- License:
- Abstract: Programmatically generating tight differential privacy (DP) bounds is a hard problem. Two core challenges are (1) finding expressive, compact, and efficient encodings of the distributions of DP algorithms, and (2) state space explosion stemming from the multiple quantifiers and relational properties of the DP definition. We address the first challenge by developing a method for tight privacy and accuracy bound synthesis using weighted model counting on binary decision diagrams, a state-of-the-art technique from the artificial intelligence and automated reasoning communities for exactly computing probability distributions. We address the second challenge by developing a framework for leveraging inherent symmetries in DP algorithms. Our solution benefits from ongoing research in probabilistic programming languages, allowing us to succinctly and expressively represent different DP algorithms with approachable language syntax that can be used by non-experts. We provide a detailed case study of our solution on the binary randomized response algorithm. We also evaluate an implementation of our solution using the Dice probabilistic programming language for the randomized response and truncated geometric above threshold algorithms. We compare to prior work on exact DP verification using Markov chain probabilistic model checking and the decision procedure DiPC. Very few existing works consider mechanized analysis of accuracy guarantees for DP algorithms. We additionally provide a detailed analysis using our technique for finding tight accuracy bounds for DP algorithms.
Related papers
- CURATE: Scaling-up Differentially Private Causal Graph Discovery [8.471466670802817]
Differential Privacy (DP) has been adopted to ensure user privacy in Causal Graph Discovery (CGD)
We present CURATE, a DP-CGD framework with adaptive privacy budgeting.
We show that CURATE achieves higher utility compared to existing DP-CGD algorithms with less privacy-leakage.
arXiv Detail & Related papers (2024-09-27T18:00:38Z) - Individualized Privacy Accounting via Subsampling with Applications in Combinatorial Optimization [55.81991984375959]
In this work, we give a new technique for analyzing individualized privacy accounting via the following simple observation.
We obtain several improved algorithms for private optimization problems, including decomposable submodular and set algorithm cover.
arXiv Detail & Related papers (2024-05-28T19:02:30Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
The sequential decision-making problem is statistically learnable if it admits a low-rank structure modeled by predictive state representations (PSRs)
This paper proposes the first known UCB-type approach for PSRs, featuring a novel bonus term that upper bounds the total variation distance between the estimated and true models.
In contrast to existing approaches for PSRs, our UCB-type algorithms enjoy computational tractability, last-iterate guaranteed near-optimal policy, and guaranteed model accuracy.
arXiv Detail & Related papers (2023-07-01T18:35:21Z) - Normalized/Clipped SGD with Perturbation for Differentially Private
Non-Convex Optimization [94.06564567766475]
DP-SGD and DP-NSGD mitigate the risk of large models memorizing sensitive training data.
We show that these two algorithms achieve similar best accuracy while DP-NSGD is comparatively easier to tune than DP-SGD.
arXiv Detail & Related papers (2022-06-27T03:45:02Z) - Differentially Private Federated Learning via Inexact ADMM with Multiple
Local Updates [0.0]
We develop a DP inexact alternating direction method of multipliers algorithm with multiple local updates for federated learning.
We show that our algorithm provides $barepsilon$-DP for every iteration, where $barepsilon$ is a privacy budget controlled by the user.
We demonstrate that our algorithm reduces the testing error by at most $31%$ compared with the existing DP algorithm, while achieving the same level of data privacy.
arXiv Detail & Related papers (2022-02-18T19:58:47Z) - Dynamic programming by polymorphic semiring algebraic shortcut fusion [1.9405875431318445]
Dynamic programming (DP) is an algorithmic design paradigm for the efficient, exact solution of intractable, problems.
This paper presents a rigorous algebraic formalism for systematically deriving DP algorithms, based on semiring.
arXiv Detail & Related papers (2021-07-05T00:51:02Z) - Convex Optimization for Parameter Synthesis in MDPs [19.808494349302784]
Probabilistic model checking aims to prove whether a Markov decision process satisfies a temporal logic specification.
We develop two approaches that iteratively obtain locally optimal runtime solutions.
We demonstrate the approaches on a satellite parameter synthesis problem with hundreds of thousands of parameters and their scalability on a wide range of commonly used benchmarks.
arXiv Detail & Related papers (2021-06-30T21:23:56Z) - Parallel Stochastic Mirror Descent for MDPs [72.75921150912556]
We consider the problem of learning the optimal policy for infinite-horizon Markov decision processes (MDPs)
Some variant of Mirror Descent is proposed for convex programming problems with Lipschitz-continuous functionals.
We analyze this algorithm in a general case and obtain an estimate of the convergence rate that does not accumulate errors during the operation of the method.
arXiv Detail & Related papers (2021-02-27T19:28:39Z) - Efficient semidefinite-programming-based inference for binary and
multi-class MRFs [83.09715052229782]
We propose an efficient method for computing the partition function or MAP estimate in a pairwise MRF.
We extend semidefinite relaxations from the typical binary MRF to the full multi-class setting, and develop a compact semidefinite relaxation that can again be solved efficiently using the solver.
arXiv Detail & Related papers (2020-12-04T15:36:29Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.