論文の概要: Hybrid$^2$ Neural ODE Causal Modeling and an Application to Glycemic Response
- arxiv url: http://arxiv.org/abs/2402.17233v2
- Date: Tue, 11 Jun 2024 15:25:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 22:22:49.721816
- Title: Hybrid$^2$ Neural ODE Causal Modeling and an Application to Glycemic Response
- Title(参考訳): Hybrid$^2$ Neural ODE Causal Modeling とグリセミック応答への応用
- Authors: Bob Junyi Zou, Matthew E. Levine, Dessi P. Zaharieva, Ramesh Johari, Emily B. Fox,
- Abstract要約: 我々は、最先端の予測性能の早期因果正性を達成する方法を示す。
1型糖尿病患者の運動後の血糖動態をモデル化する難しい課題において、最先端の予測性能を早期に達成する能力を示す。
- 参考スコア(独自算出の注目度): 5.754225700181611
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hybrid models composing mechanistic ODE-based dynamics with flexible and expressive neural network components have grown rapidly in popularity, especially in scientific domains where such ODE-based modeling offers important interpretability and validated causal grounding (e.g., for counterfactual reasoning). The incorporation of mechanistic models also provides inductive bias in standard blackbox modeling approaches, critical when learning from small datasets or partially observed, complex systems. Unfortunately, as the hybrid models become more flexible, the causal grounding provided by the mechanistic model can quickly be lost. We address this problem by leveraging another common source of domain knowledge: \emph{ranking} of treatment effects for a set of interventions, even if the precise treatment effect is unknown. We encode this information in a \emph{causal loss} that we combine with the standard predictive loss to arrive at a \emph{hybrid loss} that biases our learning towards causally valid hybrid models. We demonstrate our ability to achieve a win-win, state-of-the-art predictive performance \emph{and} causal validity, in the challenging task of modeling glucose dynamics post-exercise in individuals with type 1 diabetes.
- Abstract(参考訳): フレキシブルで表現力のあるニューラルネットワークコンポーネントを備えたメカニスティックODEベースのダイナミクスを構成するハイブリッドモデルは、特にそのようなODEベースのモデリングが重要な解釈可能性と検証された因果基底(例えば、対実的推論)を提供する科学領域において、急速に人気が高まっている。
メカニスティックモデルの導入は、小さなデータセットや部分的に観察された複雑なシステムから学ぶ際に重要な、標準的なブラックボックスモデリングアプローチにおける帰納的バイアスを与える。
残念なことに、ハイブリッドモデルがより柔軟になるにつれて、力学モデルによって提供される因果基底は急速に失われる。
この問題は、ある介入に対する治療効果の「emph{ ranking}」という、たとえ正確な治療効果が分かっていなくても、他のドメイン知識の共通源を活用することで解決する。
我々は、この情報を、標準的な予測損失と組み合わせて、因果的に有効なハイブリッドモデルへの学習を偏見する \emph{hybrid loss} にエンコードする。
1型糖尿病患者の運動後の血糖動態をモデル化する難しい課題において, 最先端の予測性能「emph{and}因果妥当性」を達成できることを実証する。
関連論文リスト
- Towards Graph Neural Network Surrogates Leveraging Mechanistic Expert Knowledge for Pandemic Response [41.94295877935867]
我々は、空間的かつ人口統計学的に解決された伝染病モデルを構築し、パンデミックの初期段階を表すデータセットのためのグラフニューラルネットワークを訓練する。
提案手法は、オンザフライ実行の可能性をもたらし、低バリアWebアプリケーションにおける病気のダイナミクスモデルの統合をもたらす。
論文 参考訳(メタデータ) (2024-11-10T15:54:09Z) - Predicting Cascading Failures with a Hyperparametric Diffusion Model [66.89499978864741]
拡散モデルのレンズによる電力グリッドのカスケード故障について検討する。
我々のモデルは、バイラル拡散原理と物理に基づく概念を統合する。
この拡散モデルはカスケード故障の痕跡から学習可能であることを示す。
論文 参考訳(メタデータ) (2024-06-12T02:34:24Z) - Causal hybrid modeling with double machine learning [4.190790144182304]
ハイブリッドモデリングは、機械学習と科学的知識を統合し、解釈可能性、一般化、自然法則の遵守を強化する。
本稿では、因果関係を推定するためにDouble Machine Learning (DML) を用いる因果関係推論フレームワークを用いてハイブリッドモデルを推定する新しい手法を提案する。
我々は、DMLに基づくハイブリッドモデリングが、エンドツーエンドのディープニューラルネットワーク(DNN)アプローチよりも因果パラメータを推定し、効率性の証明、正規化手法からのバイアスに対する堅牢性、等性回避に優れていることを実証した。
論文 参考訳(メタデータ) (2024-02-20T19:19:56Z) - Individualized Dosing Dynamics via Neural Eigen Decomposition [51.62933814971523]
ニューラル固有微分方程式アルゴリズム(NESDE)を導入する。
NESDEは個別化モデリング、新しい治療ポリシーへの調整可能な一般化、高速で連続的でクローズドな予測を提供する。
本研究は, 総合的・現実的な医療問題におけるNESDEの堅牢性を実証し, 学習力学を用いて, 模擬医療体育環境の公開を行う。
論文 参考訳(メタデータ) (2023-06-24T17:01:51Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
本稿では,自己回帰生成モデルの学習のための独自のE-ARM法を提案する。
E-ARMは、よく設計されたエネルギーベースの学習目標を活用する。
我々は、E-ARMを効率的に訓練でき、露光バイアス問題を緩和できることを示した。
論文 参考訳(メタデータ) (2022-06-26T10:58:41Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
異なる因果発見は、データ生成プロセスを一連のモジュールに分解するために提案されている。
このようなモジュラニューラル因果モデルの一般化と適応性能について検討する。
我々の分析では、モジュラーニューラル因果モデルが、低データレギュレーションにおけるゼロおよび少数ショットの適応において、他のモデルよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-06-09T17:12:32Z) - End-to-End Learning of Hybrid Inverse Dynamics Models for Precise and
Compliant Impedance Control [16.88250694156719]
剛体力学モデルの物理的に一貫した慣性パラメータを同定できる新しいハイブリッドモデルの定式化を提案する。
7自由度マニピュレータ上での最先端の逆動力学モデルに対する我々のアプローチを比較した。
論文 参考訳(メタデータ) (2022-05-27T07:39:28Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Unifying Epidemic Models with Mixtures [28.771032745045428]
新型コロナウイルスのパンデミックは、感染モデルに対する強固な理解の必要性を強調している。
本稿では2つのアプローチをブリッジする単純な混合モデルを提案する。
モデルは非機械的であるが、ネットワーク化されたSIRフレームワークに基づくプロセスの自然な結果として現れることを示す。
論文 参考訳(メタデータ) (2022-01-07T19:42:05Z) - Hybrid modeling of the human cardiovascular system using NeuralFMUs [0.0]
ハイブリッドなモデリングプロセスは、より快適で、システム知識を必要とせず、第一原理に基づくモデリングに比べてエラーの少ないことが示される。
結果として得られたハイブリッドモデルは、純粋な第一原理のホワイトボックスモデルに比べて計算性能が向上した。
考慮されたユースケースは、医療領域内外における他のモデリングおよびシミュレーションアプリケーションの例として機能する。
論文 参考訳(メタデータ) (2021-09-10T13:48:43Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
我々は、機械学習にインスパイアされたモデルと物理モデルを組み合わせた、新しいハイブリッドモデリングアプローチの概要を述べる。
このようなモデルをリアルタイム診断に利用しています。
論文 参考訳(メタデータ) (2020-03-04T00:44:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。