論文の概要: End-to-End Learning of Hybrid Inverse Dynamics Models for Precise and
Compliant Impedance Control
- arxiv url: http://arxiv.org/abs/2205.13804v1
- Date: Fri, 27 May 2022 07:39:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-30 15:25:05.155219
- Title: End-to-End Learning of Hybrid Inverse Dynamics Models for Precise and
Compliant Impedance Control
- Title(参考訳): 高精度・完全インピーダンス制御のためのハイブリッド逆ダイナミクスモデルのエンドツーエンド学習
- Authors: Moritz Reuss, Niels van Duijkeren, Robert Krug, Philipp Becker,
Vaisakh Shaj and Gerhard Neumann
- Abstract要約: 剛体力学モデルの物理的に一貫した慣性パラメータを同定できる新しいハイブリッドモデルの定式化を提案する。
7自由度マニピュレータ上での最先端の逆動力学モデルに対する我々のアプローチを比較した。
- 参考スコア(独自算出の注目度): 16.88250694156719
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: It is well-known that inverse dynamics models can improve tracking
performance in robot control. These models need to precisely capture the robot
dynamics, which consist of well-understood components, e.g., rigid body
dynamics, and effects that remain challenging to capture, e.g., stick-slip
friction and mechanical flexibilities. Such effects exhibit hysteresis and
partial observability, rendering them, particularly challenging to model.
Hence, hybrid models, which combine a physical prior with data-driven
approaches are especially well-suited in this setting. We present a novel
hybrid model formulation that enables us to identify fully physically
consistent inertial parameters of a rigid body dynamics model which is paired
with a recurrent neural network architecture, allowing us to capture unmodeled
partially observable effects using the network memory. We compare our approach
against state-of-the-art inverse dynamics models on a 7 degree of freedom
manipulator. Using data sets obtained through an optimal experiment design
approach, we study the accuracy of offline torque prediction and generalization
capabilities of joint learning methods. In control experiments on the real
system, we evaluate the model as a feed-forward term for impedance control and
show the feedback gains can be drastically reduced to achieve a given tracking
accuracy.
- Abstract(参考訳): 逆ダイナミクスモデルがロボット制御のトラッキング性能を向上させることはよく知られている。
これらのモデルは、例えば剛体力学のようなよく理解されたコンポーネントと、スティックスリップ摩擦や機械的柔軟性などの捕獲が困難な効果からなるロボット力学を正確に捉える必要がある。
このような効果はヒステリシスと部分的可観測性を示し、特にモデル化が困難である。
したがって、物理的な事前とデータ駆動アプローチを組み合わせたハイブリッドモデルは、この設定に特に適しています。
本稿では,リカレントニューラルネットワークアーキテクチャと組み合わせた剛体力学モデルの完全物理的に一貫性のある慣性パラメータを同定し,ネットワークメモリを用いた非モデル化部分可観測効果をキャプチャすることのできる,新しいハイブリッドモデル定式化を提案する。
7自由度マニピュレータにおける最先端逆動力学モデルに対する我々のアプローチを比較する。
最適実験設計手法を用いて得られたデータセットを用いて,共同学習法のオフライントルク予測と一般化能力の精度について検討した。
実システムにおける制御実験において、インピーダンス制御のフィードフォワード項としてモデルを評価し、与えられたトラッキング精度を達成するためにフィードバックゲインを劇的に削減できることを示す。
関連論文リスト
- Enhancing Dynamical System Modeling through Interpretable Machine
Learning Augmentations: A Case Study in Cathodic Electrophoretic Deposition [0.8796261172196743]
本稿では,物理システムのモデリング向上を目的とした包括的データ駆動フレームワークを提案する。
実証的応用として,電顕的電気泳動沈着(EPD)のモデル化を追求する。
論文 参考訳(メタデータ) (2024-01-16T14:58:21Z) - Exploring Model Transferability through the Lens of Potential Energy [78.60851825944212]
トランスファーラーニングは、事前訓練されたディープラーニングモデルが広く利用可能であることから、コンピュータビジョンタスクにおいて重要になっている。
既存のトレーニング済みモデルの転送可能性の測定方法は、符号化された静的特徴とタスクラベルの間の統計的相関に依存する。
我々はこれらの課題に対処するために,PEDという物理に着想を得たアプローチを提案する。
論文 参考訳(メタデータ) (2023-08-29T07:15:57Z) - Evolve Smoothly, Fit Consistently: Learning Smooth Latent Dynamics For
Advection-Dominated Systems [14.553972457854517]
複雑な物理系のサロゲートモデルを学ぶための,データ駆動・時空連続フレームワークを提案する。
ネットワークの表現力と特別に設計された整合性誘導正規化を利用して,低次元かつ滑らかな潜在軌道を得る。
論文 参考訳(メタデータ) (2023-01-25T03:06:03Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
我々は,動的・シミュレータモデルと実ロボット間の残差を学習する。
学習した残差誤差により、動的モデル、シミュレーション、および実際のハードウェア間の現実的ギャップをさらに埋めることができることを示す。
論文 参考訳(メタデータ) (2022-09-07T15:15:12Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
データからシステムの微分可能なダイナミクスモデルを学習するために、機械学習技術を使用します。
ニューラルネットワークは、大規模な時間的地平線に対して、非常に非線形な振る舞いを正確にモデル化できることが示される。
ハードウェア実験において、学習したモデルがSpotとRadio- controlled (RC)の両方の複雑な力学を表現できることを実証した。
論文 参考訳(メタデータ) (2022-04-09T22:07:34Z) - KNODE-MPC: A Knowledge-based Data-driven Predictive Control Framework
for Aerial Robots [5.897728689802829]
我々は、知識に基づくニューラル常微分方程式(KNODE)というディープラーニングツールを用いて、第一原理から得られたモデルを拡張する。
得られたハイブリッドモデルは、名目上の第一原理モデルと、シミュレーションまたは実世界の実験データから学習したニューラルネットワークの両方を含む。
閉ループ性能を改善するため、ハイブリッドモデルはKNODE-MPCとして知られる新しいMPCフレームワークに統合される。
論文 参考訳(メタデータ) (2021-09-10T12:09:18Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Action-Conditional Recurrent Kalman Networks For Forward and Inverse
Dynamics Learning [17.80270555749689]
ロボットのモデルベース制御において、正確な前方および逆ダイナミクスモデルの推定が重要な要素である。
本稿では,フォワードモデル学習のためのアーキテクチャと,逆モデル学習のためのアーキテクチャを提案する。
どちらのアーキテクチャも、予測性能の点で、既存のモデル学習フレームワークと分析モデルを大きく上回っている。
論文 参考訳(メタデータ) (2020-10-20T11:28:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。