論文の概要: Enhancing Hyperspectral Images via Diffusion Model and Group-Autoencoder
Super-resolution Network
- arxiv url: http://arxiv.org/abs/2402.17285v1
- Date: Tue, 27 Feb 2024 07:57:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-28 17:23:27.051909
- Title: Enhancing Hyperspectral Images via Diffusion Model and Group-Autoencoder
Super-resolution Network
- Title(参考訳): 拡散モデルとグループオートコーダ超解像ネットワークによるハイパースペクトル画像の強調
- Authors: Zhaoyang Wang, Dongyang Li, Mingyang Zhang, Hao Luo, Maoguo Gong
- Abstract要約: Group-Autoencoder (GAE)フレームワークは、高次元ハイパースペクトルデータを低次元潜在空間に符号化する。
DMGASRの高効率HSI SRモデル(DMGASR)
自然と遠隔の両方のハイパースペクトルデータセットに対する実験結果から,提案手法は視覚的・計量的にも他の最先端手法よりも優れていることが示された。
- 参考スコア(独自算出の注目度): 29.6360974619655
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing hyperspectral image (HSI) super-resolution (SR) methods struggle to
effectively capture the complex spectral-spatial relationships and low-level
details, while diffusion models represent a promising generative model known
for their exceptional performance in modeling complex relations and learning
high and low-level visual features. The direct application of diffusion models
to HSI SR is hampered by challenges such as difficulties in model convergence
and protracted inference time. In this work, we introduce a novel
Group-Autoencoder (GAE) framework that synergistically combines with the
diffusion model to construct a highly effective HSI SR model (DMGASR). Our
proposed GAE framework encodes high-dimensional HSI data into low-dimensional
latent space where the diffusion model works, thereby alleviating the
difficulty of training the diffusion model while maintaining band correlation
and considerably reducing inference time. Experimental results on both natural
and remote sensing hyperspectral datasets demonstrate that the proposed method
is superior to other state-of-the-art methods both visually and metrically.
- Abstract(参考訳): 既存の超スペクトル画像(HSI)超解像法は、複雑なスペクトル空間関係と低レベルの詳細を効果的に捉えるのに苦労する一方、拡散モデルは、複雑な関係をモデル化し、高レベルの視覚的特徴を学習することにおいて、優れた生成モデルである。
HSI SR への拡散モデルの直接適用は、モデル収束の困難や引き抜き推論時間といった課題によって妨げられる。
本稿では,拡散モデルと相乗的に結合して高効率なHSI SRモデル(DMGASR)を構築する,新しいグループオートエンコーダ(GAE)フレームワークを提案する。
提案するGAEフレームワークは,拡散モデルが機能する低次元潜在空間に高次元HSIデータを符号化することにより,バンド相関を維持しながら拡散モデルのトレーニングを困難にし,推定時間を著しく短縮する。
自然と遠隔の両方のハイパースペクトルデータセットに対する実験結果から,提案手法は視覚的および計量的に他の最先端手法よりも優れていることが示された。
関連論文リスト
- Degradation-Guided One-Step Image Super-Resolution with Diffusion Priors [75.24313405671433]
拡散に基づく画像超解像法 (SR) は、事前訓練された大規模なテキスト・画像拡散モデルを先行として活用することにより、顕著な成功を収めた。
本稿では,拡散型SR手法の効率問題に対処する新しい一段階SRモデルを提案する。
既存の微調整戦略とは異なり、SR専用の劣化誘導低ランク適応 (LoRA) モジュールを設計した。
論文 参考訳(メタデータ) (2024-09-25T16:15:21Z) - A Hybrid Registration and Fusion Method for Hyperspectral Super-resolution [0.913509220304172]
本稿ではRAF-NLRGSというハイブリッド登録・融合モデルを提案する。
RAFモデルは、残余データグループに埋め込まれた貴重な情報を活用するために、制約付きグループ空間を組み込む。
一般化ガウスニュートン(GGN)アルゴリズムと近似交互最適化(PAO)の枠組みも提示する。
論文 参考訳(メタデータ) (2024-07-07T06:36:19Z) - Diffusion Spectral Representation for Reinforcement Learning [17.701625371409644]
本稿では,表現学習の観点からの強化学習に拡散モデルの柔軟性を活用することを提案する。
拡散モデルとエネルギーベースモデルとの接続を利用して拡散スペクトル表現(Diff-SR)を開発する。
Diff-SRは、拡散モデルからのサンプリングの難易度と推論コストを明示的に回避しつつ、効率的なポリシー最適化と実用的なアルゴリズムを実現する方法を示す。
論文 参考訳(メタデータ) (2024-06-23T14:24:14Z) - Physics-Inspired Degradation Models for Hyperspectral Image Fusion [61.743696362028246]
ほとんどの融合法は、融合アルゴリズム自体にのみ焦点をあて、分解モデルを見落としている。
我々は、LR-HSIとHR-MSIの劣化をモデル化するための物理インスパイアされた劣化モデル(PIDM)を提案する。
提案したPIDMは,既存の核融合法における核融合性能を向上させることができる。
論文 参考訳(メタデータ) (2024-02-04T09:07:28Z) - Diffusion Models Without Attention [110.5623058129782]
Diffusion State Space Model (DiffuSSM) は、よりスケーラブルな状態空間モデルバックボーンで注目メカニズムを置き換えるアーキテクチャである。
拡散訓練におけるFLOP効率の高いアーキテクチャへの注力は、大きな前進となる。
論文 参考訳(メタデータ) (2023-11-30T05:15:35Z) - ACDMSR: Accelerated Conditional Diffusion Models for Single Image
Super-Resolution [84.73658185158222]
本稿では,ACDMSRと呼ばれる拡散モデルに基づく超解像法を提案する。
提案手法は, 決定論的反復分解過程を通じて超解像を行うために, 標準拡散モデルに適応する。
提案手法は,低解像度画像に対してより視覚的に現実的な表現を生成し,現実的なシナリオにおけるその有効性を強調した。
論文 参考訳(メタデータ) (2023-07-03T06:49:04Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
拡散モデル (DM) は画像劣化に導入され, 有望な性能を示した。
本稿では,階層型統合拡散モデル(HI-Diff)を提案する。
人工的および実世界のぼかしデータセットの実験は、HI-Diffが最先端の手法より優れていることを示した。
論文 参考訳(メタデータ) (2023-05-22T12:18:20Z) - Implicit Diffusion Models for Continuous Super-Resolution [65.45848137914592]
本稿では,高忠実度連続画像超解像のためのインプリシティ拡散モデル(IDM)を提案する。
IDMは暗黙のニューラル表現とデノナイジング拡散モデルを統合されたエンドツーエンドフレームワークに統合する。
スケーリング係数は分解能を調節し、最終出力におけるLR情報と生成された特徴の比率を変調する。
論文 参考訳(メタデータ) (2023-03-29T07:02:20Z) - Implicit Neural Representation Learning for Hyperspectral Image
Super-Resolution [0.0]
Inlicit Neural Representations (INR)は、新しい効果的な表現として進歩を遂げている。
本稿では、空間座標を対応するスペクトル放射率値にマッピングする連続関数により、HSIを表すINRに基づく新しいHSI再構成モデルを提案する。
論文 参考訳(メタデータ) (2021-12-20T14:07:54Z) - A Latent Encoder Coupled Generative Adversarial Network (LE-GAN) for
Efficient Hyperspectral Image Super-resolution [3.1023808510465627]
GAN(Generative Adversarial Network)は画像超解像のための効果的なディープラーニングフレームワークであることが証明されている。
モード崩壊の問題を緩和するため,本研究では,潜在エンコーダ(LE-GAN)と組み合わせた新しいGANモデルを提案する。
LE-GANは、生成したスペクトル空間の特徴を画像空間から潜在空間にマッピングし、生成したサンプルを正規化するための結合成分を生成する。
論文 参考訳(メタデータ) (2021-11-16T18:40:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。