論文の概要: SupResDiffGAN a new approach for the Super-Resolution task
- arxiv url: http://arxiv.org/abs/2504.13622v1
- Date: Fri, 18 Apr 2025 10:55:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-28 16:04:30.711769
- Title: SupResDiffGAN a new approach for the Super-Resolution task
- Title(参考訳): SupResDiffGAN : 超解法の新たなアプローチ
- Authors: Dawid Kopeć, Wojciech Kozłowski, Maciej Wizerkaniuk, Dawid Krutul, Jan Kocoń, Maciej Zięba,
- Abstract要約: SupResDiffGANは、GAN(Generative Adversarial Networks)の長所と超解像度タスクの拡散モデルを組み合わせた、新しいハイブリッドアーキテクチャである。
SupResDiffGANは、遅延空間表現を活用し、拡散ステップの数を減らし、他の拡散ベースの超解像モデルよりもはるかに高速な推論時間を達成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we present SupResDiffGAN, a novel hybrid architecture that combines the strengths of Generative Adversarial Networks (GANs) and diffusion models for super-resolution tasks. By leveraging latent space representations and reducing the number of diffusion steps, SupResDiffGAN achieves significantly faster inference times than other diffusion-based super-resolution models while maintaining competitive perceptual quality. To prevent discriminator overfitting, we propose adaptive noise corruption, ensuring a stable balance between the generator and the discriminator during training. Extensive experiments on benchmark datasets show that our approach outperforms traditional diffusion models such as SR3 and I$^2$SB in efficiency and image quality. This work bridges the performance gap between diffusion- and GAN-based methods, laying the foundation for real-time applications of diffusion models in high-resolution image generation.
- Abstract(参考訳): 本稿では、GAN(Generative Adversarial Networks)の長所と超分解能タスクの拡散モデルを組み合わせた、新しいハイブリッドアーキテクチャであるSupResDiffGANを提案する。
SupResDiffGANは、遅延空間表現を活用し、拡散ステップの数を減らし、競合する知覚品質を維持しながら、他の拡散ベースの超解像モデルよりもはるかに高速な推論時間を達成する。
判別器過適合を防止するため,適応ノイズ除去法を提案し,学習中に生成器と識別器のバランスを安定させる。
ベンチマークデータセットの大規模な実験により、SR3やI$^2$SBといった従来の拡散モデルよりも効率と画質が優れていることが示された。
この研究は拡散法とGAN法のパフォーマンスギャップを橋渡しし、高解像度画像生成における拡散モデルのリアルタイム応用の基礎を築いた。
関連論文リスト
- Single-Step Latent Consistency Model for Remote Sensing Image Super-Resolution [7.920423405957888]
RSISRタスクの効率性と視覚的品質を向上させるために,新しい単一ステップ拡散手法を提案する。
提案したLCMSRは,従来の拡散モデルの反復的なステップを50-1000以上から1ステップに短縮する。
実験の結果, LCMSRは効率と性能のバランスを効果的に保ち, 非拡散モデルに匹敵する推論時間を達成することがわかった。
論文 参考訳(メタデータ) (2025-03-25T09:56:21Z) - FAM Diffusion: Frequency and Attention Modulation for High-Resolution Image Generation with Stable Diffusion [63.609399000712905]
スケールした解像度での推論は反復的なパターンと構造的歪みをもたらす。
これらの問題を解決するために組み合わせた2つの単純なモジュールを提案する。
我々の手法はファム拡散と呼ばれ、任意の潜在拡散モデルにシームレスに統合でき、追加の訓練を必要としない。
論文 参考訳(メタデータ) (2024-11-27T17:51:44Z) - A Wavelet Diffusion GAN for Image Super-Resolution [7.986370916847687]
拡散モデルは,高忠実度画像生成のためのGAN(Generative Adversarial Network)の優れた代替品として登場した。
しかし、そのリアルタイム実現性は、遅いトレーニングと推論速度によって妨げられている。
本研究では,ウェーブレットを用いた単一画像超解法のための条件拡散GANスキームを提案する。
論文 参考訳(メタデータ) (2024-10-23T15:34:06Z) - Effective Diffusion Transformer Architecture for Image Super-Resolution [63.254644431016345]
画像超解像のための効果的な拡散変換器(DiT-SR)を設計する。
実際には、DiT-SRは全体のU字型アーキテクチャを活用し、すべての変圧器ブロックに対して均一な等方性設計を採用する。
我々は、広く使われているAdaLNの制限を分析し、周波数適応型時間-ステップ条件付けモジュールを提案する。
論文 参考訳(メタデータ) (2024-09-29T07:14:16Z) - Taming Diffusion Prior for Image Super-Resolution with Domain Shift SDEs [36.65594293655289]
DoSSRは、事前訓練された拡散モデルの生成力を生かしたドメインシフト拡散に基づくSRモデルである。
このアプローチの核となるのは、既存の拡散モデルとシームレスに統合されるドメインシフト方程式です。
提案手法は, 合成および実世界のデータセットに対して, 5つのサンプリングステップしか必要とせず, 最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-09-26T12:16:11Z) - Does Diffusion Beat GAN in Image Super Resolution? [4.196273175812082]
多くの研究において、拡散型ISRモデルはより大きなネットワークを使用し、GANベースラインよりも長く訓練されている。
本稿では,GANモデルが拡散モデルに匹敵する,あるいは優れた結果が得られることを示す。
スケールしたGANの推論コードと重みを公開します。
論文 参考訳(メタデータ) (2024-05-27T15:19:59Z) - Enhancing Hyperspectral Images via Diffusion Model and Group-Autoencoder
Super-resolution Network [29.6360974619655]
Group-Autoencoder (GAE)フレームワークは、高次元ハイパースペクトルデータを低次元潜在空間に符号化する。
DMGASRの高効率HSI SRモデル(DMGASR)
自然と遠隔の両方のハイパースペクトルデータセットに対する実験結果から,提案手法は視覚的・計量的にも他の最先端手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-02-27T07:57:28Z) - ResShift: Efficient Diffusion Model for Image Super-resolution by
Residual Shifting [70.83632337581034]
拡散に基づく画像超解像法(SR)は主に低推論速度によって制限される。
本稿では,SRの拡散段数を大幅に削減する新しい,効率的な拡散モデルを提案する。
本手法は,残差をシフトすることで高分解能画像と低分解能画像の間を移動させるマルコフ連鎖を構成する。
論文 参考訳(メタデータ) (2023-07-23T15:10:02Z) - ACDMSR: Accelerated Conditional Diffusion Models for Single Image
Super-Resolution [84.73658185158222]
本稿では,ACDMSRと呼ばれる拡散モデルに基づく超解像法を提案する。
提案手法は, 決定論的反復分解過程を通じて超解像を行うために, 標準拡散モデルに適応する。
提案手法は,低解像度画像に対してより視覚的に現実的な表現を生成し,現実的なシナリオにおけるその有効性を強調した。
論文 参考訳(メタデータ) (2023-07-03T06:49:04Z) - Semi-Implicit Denoising Diffusion Models (SIDDMs) [50.30163684539586]
Denoising Diffusion Probabilistic Models (DDPM)のような既存のモデルは、高品質で多様なサンプルを提供するが、本質的に多くの反復的なステップによって遅くなる。
暗黙的要因と明示的要因を一致させることにより、この問題に対処する新しいアプローチを導入する。
提案手法は拡散モデルに匹敵する生成性能と,少数のサンプリングステップを持つモデルに比較して非常に優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2023-06-21T18:49:22Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
拡散モデルは画像復元作業において有望な結果を得たが、時間を要する、過剰な計算資源消費、不安定な復元に悩まされている。
本稿では,DiffLLと呼ばれる高能率かつ高能率な拡散型低光画像強調手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T03:08:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。