論文の概要: Outdoor Environment Reconstruction with Deep Learning on Radio
Propagation Paths
- arxiv url: http://arxiv.org/abs/2402.17336v1
- Date: Tue, 27 Feb 2024 09:11:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-28 17:02:18.739979
- Title: Outdoor Environment Reconstruction with Deep Learning on Radio
Propagation Paths
- Title(参考訳): 無線伝搬経路の深層学習による屋外環境復元
- Authors: Hrant Khachatrian, Rafayel Mkrtchyan, Theofanis P. Raptis
- Abstract要約: 本稿では,屋外環境再建のための環境無線信号を利用した新しいアプローチを提案する。
無線周波数(RF)データを解析することにより,環境特性を推定し,屋外環境をデジタル的に再構築することを目的とする。
2つのDL駆動アプローチが評価され、交差対ユニオン(IoU)、ハウスドルフ距離、シャンファー距離などの指標を用いて性能が評価される。
- 参考スコア(独自算出の注目度): 5.030571576007511
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conventional methods for outdoor environment reconstruction rely
predominantly on vision-based techniques like photogrammetry and LiDAR, facing
limitations such as constrained coverage, susceptibility to environmental
conditions, and high computational and energy demands. These challenges are
particularly pronounced in applications like augmented reality navigation,
especially when integrated with wearable devices featuring constrained
computational resources and energy budgets. In response, this paper proposes a
novel approach harnessing ambient wireless signals for outdoor environment
reconstruction. By analyzing radio frequency (RF) data, the paper aims to
deduce the environmental characteristics and digitally reconstruct the outdoor
surroundings. Investigating the efficacy of selected deep learning (DL)
techniques on the synthetic RF dataset WAIR-D, the study endeavors to address
the research gap in this domain. Two DL-driven approaches are evaluated
(convolutional U-Net and CLIP+ based on vision transformers), with performance
assessed using metrics like intersection-over-union (IoU), Hausdorff distance,
and Chamfer distance. The results demonstrate promising performance of the
RF-based reconstruction method, paving the way towards lightweight and scalable
reconstruction solutions.
- Abstract(参考訳): 従来の屋外環境の再構築手法は、フォトグラム法やLiDARのような視覚に基づく技術に大きく依存しており、制約付きカバレッジ、環境条件への感受性、高い計算とエネルギー要求といった制限に直面している。
これらの課題は、拡張現実ナビゲーションのようなアプリケーション、特に制約のある計算リソースとエネルギー予算を備えたウェアラブルデバイスとの統合において顕著である。
そこで本稿では,屋外環境復元のための環境無線信号を用いた新しい手法を提案する。
無線周波数(RF)データを解析することにより,環境特性を推定し,屋外環境をデジタル的に再構築することを目的とする。
合成rfデータセットwair-dにおける選択型深層学習(dl)手法の有効性を検討するため,本研究は,この領域における研究ギャップに対処することを目的としている。
2つのDL駆動アプローチ(ビジョントランスフォーマーに基づく畳み込みU-NetとCLIP+)が評価され、交叉結合(IoU)、ハウスドルフ距離、シャンファー距離などの指標を用いて評価される。
その結果,RFを用いた再建法の性能が向上し,軽量でスケーラブルな再建ソリューションへの道が開けた。
関連論文リスト
- Generalizable Non-Line-of-Sight Imaging with Learnable Physical Priors [52.195637608631955]
非視線画像(NLOS)は、その潜在的な応用により注目されている。
既存のNLOS再構成アプローチは、経験的物理的前提に依存して制約される。
本稿では,Learningable Path Compensation(LPC)とAdaptive Phasor Field(APF)の2つの主要な設計を含む,学習に基づく新しいソリューションを提案する。
論文 参考訳(メタデータ) (2024-09-21T04:39:45Z) - HarmonicNeRF: Geometry-Informed Synthetic View Augmentation for 3D Scene Reconstruction in Driving Scenarios [2.949710700293865]
HarmonicNeRFは、屋外の自己監督型単分子シーン再構築のための新しいアプローチである。
形状インフォームド合成ビューで入力空間を拡大することにより、NeRFの強度を生かし、表面再構成精度を高める。
提案手法は,新しい深度ビューを合成し,シーンを再構築するための新しいベンチマークを確立し,既存の手法よりも優れていた。
論文 参考訳(メタデータ) (2023-10-09T07:42:33Z) - Neural Acoustic Context Field: Rendering Realistic Room Impulse Response
With Neural Fields [61.07542274267568]
このレターでは、音声シーンをパラメータ化するためのNACFと呼ばれる新しいニューラルネットワークコンテキストフィールドアプローチを提案する。
RIRのユニークな性質により、時間相関モジュールとマルチスケールエネルギー崩壊基準を設計する。
実験の結果,NACFは既存のフィールドベース手法よりも顕著なマージンで優れていた。
論文 参考訳(メタデータ) (2023-09-27T19:50:50Z) - Synthetic Wave-Geometric Impulse Responses for Improved Speech
Dereverberation [69.1351513309953]
室内インパルス応答 (RIR) の低周波成分を正確にシミュレートすることが, 良好な脱ヴァーベレーションを実現する上で重要であることを示す。
本研究では, ハイブリッド合成RIRで訓練された音声残響モデルが, 従来の幾何線トレーシング法により学習されたRIRで訓練されたモデルよりも優れていたことを示す。
論文 参考訳(メタデータ) (2022-12-10T20:15:23Z) - Sensor Control for Information Gain in Dynamic, Sparse and Partially
Observed Environments [1.5402666674186938]
本研究では,部分観測可能,動的,疎密なサンプル環境下での情報収集のための自律型センサ制御手法を提案する。
本研究は,(1)新しい情報獲得報酬を用いて,未開の非定常環境における探索を改善することで,DAN強化学習フレームワークを拡張した。
また、目的のRFスペクトル/フィールドからのサンプリングが限定された状況にまで拡張し、制限されたフィールドサンプリングから反復的に改善されたモデルを介してコントローラを微調整するオリジナルのRLアルゴリズムのモデルベースバージョンを提案する。
論文 参考訳(メタデータ) (2022-11-03T00:03:14Z) - Few-Shot Audio-Visual Learning of Environment Acoustics [89.16560042178523]
室内インパルス応答 (RIR) 関数は、周囲の物理的環境がリスナーが聴く音をどう変換するかをキャプチャする。
我々は、空間で観測された画像とエコーのスパースセットに基づいて、RIRを推測する方法を探る。
3次元環境のための最先端オーディオ視覚シミュレータを用いた実験において,本手法が任意のRIRを生成できることを実証した。
論文 参考訳(メタデータ) (2022-06-08T16:38:24Z) - Deep Reinforcement Learning Based on Location-Aware Imitation
Environment for RIS-Aided mmWave MIMO Systems [17.713210541836155]
本文は, 接合ビームフォーミング設計のための位置認識模倣環境に基づく新しい深部強化学習(DRL)アルゴリズムを提案する。
具体的には、ユーザの位置とmmWaveチャネルの幾何学的関係に基づいて、伝送環境を模倣するニューラルネットワークを設計する。
論文 参考訳(メタデータ) (2022-05-18T08:25:36Z) - Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
Reconfigurable Intelligent Surfaces(RIS)の新たな技術は、スマート無線環境の実現手段として準備されている。
RISは、無線媒体上の電磁信号の伝搬を動的に制御するための、高度にスケーラブルで低コストで、ハードウェア効率が高く、ほぼエネルギーニュートラルなソリューションを提供する。
このような再構成可能な無線環境におけるRISの密配置に関する大きな課題の1つは、複数の準曲面の効率的な構成である。
論文 参考訳(メタデータ) (2022-05-08T06:21:33Z) - Phase Shift Design in RIS Empowered Wireless Networks: From Optimization
to AI-Based Methods [83.98961686408171]
再構成可能なインテリジェントサーフェス(RIS)は、無線ネットワークのための無線伝搬環境をカスタマイズする革命的な機能を持つ。
無線システムにおけるRISの利点を完全に活用するには、反射素子の位相を従来の通信資源と共同で設計する必要がある。
本稿では、RISが課す制約を扱うための現在の最適化手法と人工知能に基づく手法についてレビューする。
論文 参考訳(メタデータ) (2022-04-28T09:26:14Z) - Truly Intelligent Reflecting Surface-Aided Secure Communication Using
Deep Learning [32.34501171201543]
本稿では,無線環境における通信のための物理層セキュリティ設計のための機械学習について考察する。
リアルタイムにIRS要素の反射を調整するための深層学習(DL)技術が開発されている。
論文 参考訳(メタデータ) (2020-04-07T00:48:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。