論文の概要: ICP-Flow: LiDAR Scene Flow Estimation with ICP
- arxiv url: http://arxiv.org/abs/2402.17351v2
- Date: Thu, 21 Mar 2024 09:20:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 18:58:05.428611
- Title: ICP-Flow: LiDAR Scene Flow Estimation with ICP
- Title(参考訳): ICP-Flow:ICPを用いたLiDARシーンフロー推定
- Authors: Yancong Lin, Holger Caesar,
- Abstract要約: シーンフローは、近くの時間ステップで自動運転車が捉えた2つのLiDARスキャン間の3D運動を特徴付ける。
我々は,学習不要なフロー推定器であるICP-Flowを提案し,オブジェクトをスキャン上で関連付け,局所的な剛性変換を推定する。
教師付きモデルを含む最先端のベースラインをデータセット上で上回り、Argoverse-v2とnuScenesで競合的に実行します。
- 参考スコア(独自算出の注目度): 2.9290232815049926
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scene flow characterizes the 3D motion between two LiDAR scans captured by an autonomous vehicle at nearby timesteps. Prevalent methods consider scene flow as point-wise unconstrained flow vectors that can be learned by either large-scale training beforehand or time-consuming optimization at inference. However, these methods do not take into account that objects in autonomous driving often move rigidly. We incorporate this rigid-motion assumption into our design, where the goal is to associate objects over scans and then estimate the locally rigid transformations. We propose ICP-Flow, a learning-free flow estimator. The core of our design is the conventional Iterative Closest Point (ICP) algorithm, which aligns the objects over time and outputs the corresponding rigid transformations. Crucially, to aid ICP, we propose a histogram-based initialization that discovers the most likely translation, thus providing a good starting point for ICP. The complete scene flow is then recovered from the rigid transformations. We outperform state-of-the-art baselines, including supervised models, on the Waymo dataset and perform competitively on Argoverse-v2 and nuScenes. Further, we train a feedforward neural network, supervised by the pseudo labels from our model, and achieve top performance among all models capable of real-time inference. We validate the advantage of our model on scene flow estimation with longer temporal gaps, up to 0.4 seconds where other models fail to deliver meaningful results.
- Abstract(参考訳): シーンフローは、近くの時間ステップで自動運転車が捉えた2つのLiDARスキャン間の3D運動を特徴付ける。
代表的な方法は、シーンフローを、大規模トレーニングまたは推論時の時間的最適化によって学習できる、ポイントワイズな非制約フローベクトルとして考えることである。
しかし、これらの手法は、自律運転中の物体がしばしば厳格に動くことを考慮しない。
この剛体運動の仮定を我々の設計に取り入れ、目的はスキャン上のオブジェクトを関連付け、局所的な剛体変換を推定することである。
学習不要なフロー推定器であるICP-Flowを提案する。
我々の設計の中核は、オブジェクトを時間とともに整列させ、対応する剛性変換を出力する従来の反復閉点(ICP)アルゴリズムである。
重要なことは、ICPを支援するために、最も可能性の高い翻訳を発見するヒストグラムに基づく初期化を提案し、ICPの出発点となる。
完全なシーンフローは、剛性変換から回復される。
教師付きモデルを含む最先端のベースラインをWaymoデータセットで上回り、Argoverse-v2とnuScenesで競合的に実行します。
さらに,我々のモデルから擬似ラベルによって教師されるフィードフォワードニューラルネットワークを訓練し,リアルタイム推論が可能なすべてのモデルでトップパフォーマンスを実現する。
我々は,他のモデルで有意義な結果が得られなかった場合の時間差を最大0.4秒に抑えながら,シーンフロー推定におけるモデルの有用性を検証する。
関連論文リスト
- ALOcc: Adaptive Lifting-based 3D Semantic Occupancy and Cost Volume-based Flow Prediction [89.89610257714006]
既存の手法は、これらのタスクの要求に応えるために高い精度を優先する。
本稿では,3次元セマンティック占有率予測とフロー推定のための一連の改善点を紹介する。
私たちの純粋な時間的アーキテクチャフレームワークであるALOccは、速度と精度の最適なトレードオフを実現しています。
論文 参考訳(メタデータ) (2024-11-12T11:32:56Z) - OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
学習可能なクエリの集合を用いて、占有された場所とクラスを同時に予測するフレームワークを提案する。
OPUSには、モデルパフォーマンスを高めるための非自明な戦略が組み込まれている。
最も軽量なモデルではOcc3D-nuScenesデータセットの2倍 FPS に優れたRayIoUが得られる一方、最も重いモデルは6.1 RayIoUを上回ります。
論文 参考訳(メタデータ) (2024-09-14T07:44:22Z) - SeFlow: A Self-Supervised Scene Flow Method in Autonomous Driving [18.88208422580103]
連続したLiDARスキャンで各点における3次元運動を予測する。
現在の最先端の手法は、シーンフローネットワークをトレーニングするために注釈付きデータを必要とする。
本研究では,効率的な動的分類を学習に基づくシーンフローパイプラインに統合するSeFlowを提案する。
論文 参考訳(メタデータ) (2024-07-01T18:22:54Z) - PointFlowHop: Green and Interpretable Scene Flow Estimation from
Consecutive Point Clouds [49.7285297470392]
本研究では,PointFlowHopと呼ばれる3次元シーンフローの効率的な推定法を提案する。
ポイントフローホップは2つの連続する点雲を取り、第1点雲の各点の3次元フローベクトルを決定する。
シーンフロー推定タスクを,エゴモーション補償,オブジェクトアソシエーション,オブジェクトワイドモーション推定など,一連のサブタスクに分解する。
論文 参考訳(メタデータ) (2023-02-27T23:06:01Z) - SCOOP: Self-Supervised Correspondence and Optimization-Based Scene Flow [25.577386156273256]
シーンフロー推定は、連続した観察からシーンの3次元運動を見つけることを目的として、コンピュータビジョンにおける長年の課題である。
そこで本研究では,少量のデータから学習可能なシーンフロー推定手法であるSCOOPについて紹介する。
論文 参考訳(メタデータ) (2022-11-25T10:52:02Z) - What Matters for 3D Scene Flow Network [44.02710380584977]
点雲からの3次元シーンフロー推定はコンピュータビジョンにおける低レベルな3次元モーション知覚タスクである。
そこで本研究では,初期シーンフロー推定時の逆方向の信頼性検証が可能な,新しい全対全フロー埋め込み層を提案する。
提案したモデルは,FlyingThings3Dデータセットで少なくとも38.2%,KITTI Scene Flowデータセットで24.7%,EPE3Dメトリックで,既存のすべてのメソッドを上回ります。
論文 参考訳(メタデータ) (2022-07-19T09:27:05Z) - Self-Point-Flow: Self-Supervised Scene Flow Estimation from Point Clouds
with Optimal Transport and Random Walk [59.87525177207915]
シーンフローを近似する2点雲間の対応性を確立するための自己教師型手法を開発した。
本手法は,自己教師付き学習手法の最先端性能を実現する。
論文 参考訳(メタデータ) (2021-05-18T03:12:42Z) - SCTN: Sparse Convolution-Transformer Network for Scene Flow Estimation [71.2856098776959]
点雲は非秩序であり、その密度は著しく一様ではないため、点雲の3次元運動の推定は困難である。
本稿では,sparse convolution-transformer network (sctn) という新しいアーキテクチャを提案する。
学習した関係に基づく文脈情報が豊富で,対応点の一致に役立ち,シーンフローの推定に有効であることを示す。
論文 参考訳(メタデータ) (2021-05-10T15:16:14Z) - FlowStep3D: Model Unrolling for Self-Supervised Scene Flow Estimation [87.74617110803189]
シーンフローとして知られるシーン内の点の3次元運動を推定することは、コンピュータビジョンにおける中核的な問題である。
本稿では,シーンフローの予測を洗練するための反復的アライメント手順の1ステップを学習する再帰的アーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-11-19T23:23:48Z) - Do not trust the neighbors! Adversarial Metric Learning for
Self-Supervised Scene Flow Estimation [0.0]
シーンフローは動的3次元シーンの個々の点に3次元運動ベクトルを推定するタスクである。
本稿では,3次元シーンフローベンチマークと,トレーニングフローモデルのための新しい自己教師型セットアップを提案する。
我々は,移動コヒーレンスを保ち,多くの自監督ベースラインが把握できない局所的なジオメトリーを維持できることを発見した。
論文 参考訳(メタデータ) (2020-11-01T17:41:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。