論文の概要: DS-Agent: Automated Data Science by Empowering Large Language Models with Case-Based Reasoning
- arxiv url: http://arxiv.org/abs/2402.17453v5
- Date: Tue, 28 May 2024 06:50:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 11:28:48.685606
- Title: DS-Agent: Automated Data Science by Empowering Large Language Models with Case-Based Reasoning
- Title(参考訳): DS-Agent:ケースベース推論による大規模言語モデルを活用したデータサイエンスの自動化
- Authors: Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen, Yi Chang, Jun Wang,
- Abstract要約: 大規模言語モデル(LLM)エージェントとケースベース推論(CBR)を利用した新しいフレームワークであるDS-Agentを提案する。
開発段階では、DS-AgentはCBRフレームワークに従い、自動イテレーションパイプラインを構築する。
デプロイメントの段階では、DS-Agentは、シンプルなCBRパラダイムで低リソースのデプロイメントステージを実装し、LCMの基本能力に対する需要を大幅に削減する。
- 参考スコア(独自算出の注目度): 56.887047551101574
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we investigate the potential of large language models (LLMs) based agents to automate data science tasks, with the goal of comprehending task requirements, then building and training the best-fit machine learning models. Despite their widespread success, existing LLM agents are hindered by generating unreasonable experiment plans within this scenario. To this end, we present DS-Agent, a novel automatic framework that harnesses LLM agent and case-based reasoning (CBR). In the development stage, DS-Agent follows the CBR framework to structure an automatic iteration pipeline, which can flexibly capitalize on the expert knowledge from Kaggle, and facilitate consistent performance improvement through the feedback mechanism. Moreover, DS-Agent implements a low-resource deployment stage with a simplified CBR paradigm to adapt past successful solutions from the development stage for direct code generation, significantly reducing the demand on foundational capabilities of LLMs. Empirically, DS-Agent with GPT-4 achieves 100\% success rate in the development stage, while attaining 36\% improvement on average one pass rate across alternative LLMs in the deployment stage. In both stages, DS-Agent achieves the best rank in performance, costing \$1.60 and \$0.13 per run with GPT-4, respectively. Our data and code are open-sourced at https://github.com/guosyjlu/DS-Agent.
- Abstract(参考訳): 本研究では,大規模言語モデル(LLM)をベースとしたエージェントが,タスク要求を理解し,最適な機械学習モデルを構築し,訓練することを目的として,データサイエンスタスクを自動化する可能性について検討する。
その成功にもかかわらず、既存のLLMエージェントは、このシナリオ内で不合理な実験計画を発生させることで妨げられている。
この目的のために, LLMエージェントとケースベース推論(CBR)を利用した新しい自動フレームワークDS-Agentを提案する。
開発段階では、DS-AgentはCBRフレームワークに従って自動イテレーションパイプラインを構築し、Kaggleから専門家の知識を柔軟に活用し、フィードバックメカニズムを通じて一貫したパフォーマンス改善を促進する。
さらにDS-Agentは、開発段階で成功したソリューションを直接コード生成に適応させるため、シンプルなCBRパラダイムで低リソースのデプロイメントステージを実装しており、LCMの基本能力に対する需要を著しく減らしている。
GPT-4を用いたDS-Agentは、開発段階では100倍の成功率を達成すると同時に、デプロイ段階では、代替LLMの平均1パスレートを36倍改善する。
どちらの段階でもDS-AgentはGPT-4で1ラン当たり1.60ドルと0.13ドルという最高の成績を収めている。
我々のデータとコードはhttps://github.com/guosyjlu/DS-Agent.comでオープンソース化されています。
関連論文リスト
- Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
本稿では,データセット間のデータ品質向上を自動化する新しいStar-Agentsフレームワークを提案する。
このフレームワークは最初,複数のLDMエージェントを用いた多様なインストラクションデータを生成する。
生成したデータは、難易度と品質の両方を評価する二重モデル法を用いて厳密な評価を行う。
論文 参考訳(メタデータ) (2024-11-21T02:30:53Z) - AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
自動機械学習(Automated Machine Learning, ML)は、開発パイプライン内のタスクを自動化することによって、AI開発を加速する。
近年の作業では,そのような負担を軽減するために,大規模言語モデル(LLM)の利用が始まっている。
本稿では,フルパイプのAutoMLに適した新しいマルチエージェントフレームワークであるAutoML-Agentを提案する。
論文 参考訳(メタデータ) (2024-10-03T20:01:09Z) - Large Language Models Can Self-Improve At Web Agent Tasks [37.17001438055515]
大規模言語モデル(LLM)は、ゼロショットまたは少数ショットの方法でエージェントとして新しい環境をナビゲートする機能を最近デモした。
WebArena ベンチマークを用いて,LLM が長期タスクにおけるエージェントとしての性能を自己向上する方法について検討した。
自己改善手順により,WebArenaベンチマークのベースモデルよりもタスク完了率を31%向上させる。
論文 参考訳(メタデータ) (2024-05-30T17:52:36Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
オープンソースの事前訓練された大規模言語モデル(LLM)は、強力な言語理解と生成能力を示す。
現実世界の複雑な問題に対処するエージェントとして使用される場合、ChatGPTやGPT-4のような大型の商用モデルに比べてパフォーマンスははるかに劣る。
論文 参考訳(メタデータ) (2024-03-29T03:48:12Z) - Agent-FLAN: Designing Data and Methods of Effective Agent Tuning for Large Language Models [56.00992369295851]
オープンソースのLarge Language Models(LLM)は、さまざまなNLPタスクで大きな成功を収めていますが、エージェントとして振る舞う場合、それでもAPIベースのモデルよりもはるかに劣っています。
本稿では,(1) エージェント学習コーパスを,(1) エージェント学習データの分布から大きくシフトするエージェント推論と,(2) エージェントタスクが必要とする能力に異なる学習速度を示すエージェント学習コーパスと,(3) 幻覚を導入することでエージェント能力を改善する際の副作用について述べる。
本稿では,エージェントのためのFLANモデルを効果的に構築するためのエージェントFLANを提案する。
論文 参考訳(メタデータ) (2024-03-19T16:26:10Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
大規模言語モデル(LLM)は、従来のNLPタスクを超えた現実的な実用的ミッションをターゲットとして、ますます賢く自律的になってきています。
我々は,現在8つの異なる環境からなるベンチマークであるAgentBenchを紹介し,LLM-as-Agentの推論と意思決定能力を評価する。
論文 参考訳(メタデータ) (2023-08-07T16:08:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。