論文の概要: Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning
- arxiv url: http://arxiv.org/abs/2403.19962v1
- Date: Fri, 29 Mar 2024 03:48:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 16:34:41.922005
- Title: Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning
- Title(参考訳): 低パラメータLDMのチューニングとマルチブランチ推論による汎用エージェント機能向上
- Authors: Qinhao Zhou, Zihan Zhang, Xiang Xiang, Ke Wang, Yuchuan Wu, Yongbin Li,
- Abstract要約: オープンソースの事前訓練された大規模言語モデル(LLM)は、強力な言語理解と生成能力を示す。
現実世界の複雑な問題に対処するエージェントとして使用される場合、ChatGPTやGPT-4のような大型の商用モデルに比べてパフォーマンスははるかに劣る。
- 参考スコア(独自算出の注目度): 56.82041895921434
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Open-source pre-trained Large Language Models (LLMs) exhibit strong language understanding and generation capabilities, making them highly successful in a variety of tasks. However, when used as agents for dealing with complex problems in the real world, their performance is far inferior to large commercial models such as ChatGPT and GPT-4. As intelligent agents, LLMs need to have the capabilities of task planning, long-term memory, and the ability to leverage external tools to achieve satisfactory performance. Various methods have been proposed to enhance the agent capabilities of LLMs. On the one hand, methods involve constructing agent-specific data and fine-tuning the models. On the other hand, some methods focus on designing prompts that effectively activate the reasoning abilities of the LLMs. We explore both strategies on the 7B and 13B models. We propose a comprehensive method for constructing agent-specific data using GPT-4. Through supervised fine-tuning with constructed data, we find that for these models with a relatively small number of parameters, supervised fine-tuning can significantly reduce hallucination outputs and formatting errors in agent tasks. Furthermore, techniques such as multi-path reasoning and task decomposition can effectively decrease problem complexity and enhance the performance of LLMs as agents. We evaluate our method on five agent tasks of AgentBench and achieve satisfactory results.
- Abstract(参考訳): オープンソースの事前訓練された大規模言語モデル(LLM)は、強力な言語理解と生成能力を示し、様々なタスクで高い成功を収めている。
しかし、現実世界の複雑な問題に対処するエージェントとして使用される場合、ChatGPTやGPT-4のような大型の商用モデルに比べてパフォーマンスははるかに劣る。
インテリジェントなエージェントとして、LCMはタスク計画、長期記憶、そして十分なパフォーマンスを達成するために外部ツールを活用する能力を持つ必要がある。
LLMのエージェント能力を高めるために,様々な手法が提案されている。
一方、メソッドはエージェント固有のデータを構築し、モデルを微調整する。
一方、LLMの推論能力を効果的に活性化するプロンプトの設計に焦点を当てた手法もある。
7Bモデルと13Bモデルの両方の戦略を検討します。
GPT-4を用いてエージェント固有データを構築するための総合的手法を提案する。
構築されたデータを用いた教師付き微調整により、比較的少数のパラメータを持つこれらのモデルでは、教師付き微調整は、エージェントタスクにおける幻覚出力とフォーマットエラーを著しく削減できることがわかった。
さらに、マルチパス推論やタスク分解といった手法は、問題複雑性を効果的に低減し、エージェントとしてのLLMの性能を高めることができる。
我々は,エージェントベンチの5つのエージェントタスクについて評価を行い,良好な結果を得た。
関連論文リスト
- MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation [52.739500459903724]
大規模言語モデル(LLM)は、ロボティクスの操作やナビゲーションなど、さまざまな領域にまたがる優れた計画能力を示している。
特殊なLLMエージェント間で高レベル計画および低レベル制御コード生成を分散する新しいマルチエージェントLLMフレームワークを提案する。
長軸タスクを含む9つのRLBenchタスクに対するアプローチを評価し、ゼロショット環境でロボット操作を解く能力を実証した。
論文 参考訳(メタデータ) (2024-11-26T17:53:44Z) - Improving Small-Scale Large Language Models Function Calling for Reasoning Tasks [0.8425561594225592]
本研究では,関数呼び出しにおいて,より小さな言語モデルを訓練するための新しいフレームワークを提案する。
特定の論理的および数学的推論タスクに焦点を当てている。
このアプローチは,関数呼び出しによるこれらのタスクの小型モデルの性能向上を目的としている。
論文 参考訳(メタデータ) (2024-10-24T16:27:35Z) - AvaTaR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning [93.96463520716759]
大規模言語モデル(LLM)エージェントは、精度と幻覚を高めるために外部ツールと知識を活用する際、印象的な能力を示した。
本稿では、LLMエージェントを最適化して提供されたツールを効果的に活用し、与えられたタスクのパフォーマンスを向上させる新しい自動化フレームワークであるAvaTaRを紹介する。
論文 参考訳(メタデータ) (2024-06-17T04:20:02Z) - Adaptive In-conversation Team Building for Language Model Agents [33.03550687362213]
複数の大規模言語モデル(LLM)エージェントを活用することは、複雑なタスクに取り組む上で有望なアプローチであることが示されている。
私たちの新しい適応型チーム構築パラダイムは、Captain Agentという新しいエージェント設計を通じて実現された柔軟なソリューションを提供します。
6つの実世界のシナリオに対する包括的な評価は、Captain Agentが既存のマルチエージェントメソッドを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2024-05-29T18:08:37Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
本稿では,多エージェント協調のための新しいフレームワークを提案する。これは,効率的な自己調整のための強化アドバンテージフィードバック(Reinforced Advantage feedback, ReAd)を導入する。
強化学習における重み付き回帰を多エージェントシステムに拡張して理論的解析を行う。
Over-AIと難解なRoCoBenchの実験は、ReAdが成功率のベースラインを超え、エージェントの相互作用ステップを著しく減少させることを示している。
論文 参考訳(メタデータ) (2024-05-23T08:33:19Z) - DS-Agent: Automated Data Science by Empowering Large Language Models with Case-Based Reasoning [56.887047551101574]
大規模言語モデル(LLM)エージェントとケースベース推論(CBR)を利用した新しいフレームワークであるDS-Agentを提案する。
開発段階では、DS-AgentはCBRフレームワークに従い、自動イテレーションパイプラインを構築する。
デプロイメントの段階では、DS-Agentは、シンプルなCBRパラダイムで低リソースのデプロイメントステージを実装し、LCMの基本能力に対する需要を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-27T12:26:07Z) - Offline Training of Language Model Agents with Functions as Learnable Weights [39.88545362699836]
LLM重みを変更することなくLLM(Large Language Models)エージェントを訓練する新しいパラダイムを提案する。
LLMを利用してエージェントの機能を更新し、ロールバックとアーリーストップという2つの戦略でエージェントトレーニングアルゴリズムを考案するエージェントを開発する。
広範囲な実験により、エージェント訓練パラダイムが代表的LLMエージェントの性能を大幅に改善できることが示される。
論文 参考訳(メタデータ) (2024-02-17T18:31:21Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
大規模言語モデル(LLM)エージェントはスタンドアロンのLLMの機能を大幅に拡張する。
本稿では、上記の機能をプランナー、呼び出し元、要約器に分解する新しい手法を提案する。
このモジュール化されたフレームワークは、個々の更新と、それぞれの機能を構築するための小さなLLMの潜在的な使用を容易にする。
論文 参考訳(メタデータ) (2024-01-14T16:17:07Z) - AgentTuning: Enabling Generalized Agent Abilities for LLMs [35.74502545364593]
本稿では,オープンな大規模言語モデルのエージェント能力を高めるための,シンプルで汎用的なAgentTuningを提案する。
我々は、AgentInstructと一般的なドメインからのオープンソース命令を組み合わせることで、ハイブリッドなインストラクションチューニング戦略を採用する。
評価の結果,AgentTuning は汎用能力を損なうことなく LLM のエージェント機能を実現することができることがわかった。
論文 参考訳(メタデータ) (2023-10-19T15:19:53Z) - TPTU: Large Language Model-based AI Agents for Task Planning and Tool
Usage [28.554981886052953]
大規模言語モデル(LLM)は、様々な現実世界のアプリケーションのための強力なツールとして登場した。
LLMの本質的な生成能力は、その長所にもかかわらず、複雑なタスクを扱うには不十分である。
本稿では,LLMベースのAIエージェントに適した構造化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-07T09:22:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。