論文の概要: PureLottery: Fair and Bias-Resistant Leader Election with a Novel Single-Elimination Tournament Algorithm
- arxiv url: http://arxiv.org/abs/2402.17459v1
- Date: Tue, 27 Feb 2024 12:30:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 06:59:15.614472
- Title: PureLottery: Fair and Bias-Resistant Leader Election with a Novel Single-Elimination Tournament Algorithm
- Title(参考訳): PureLottery: 単発トーナメントアルゴリズムによる公正かつバイアス耐性の高いリーダ選挙
- Authors: Jonas Ballweg,
- Abstract要約: リーダ選挙(LE)は分散システムとブロックチェーン技術において重要であり、ひとつの参加者がリーダとして行動することを保証する。
従来のLEメソッドは、しばしば分散乱数生成(RNG)に依存しており、操作の脆弱性、公平性の欠如、検証遅延関数(VDF)や公開検証秘密共有(PVSS)といった複雑な手順の必要性といった問題に直面している。
この学説はランダム化されたLEに対する新しいアプローチを示し、ゲーム理論的な仮定を利用して、参加者がリーダーとして選ばれることを目指して、機会を減少させる行為を自然に避ける。
この観点は、分散化の必要性を排除してLEを単純化する
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Leader Election (LE) is crucial in distributed systems and blockchain technology, ensuring one participant acts as the leader. Traditional LE methods often depend on distributed random number generation (RNG), facing issues like vulnerability to manipulation, lack of fairness, and the need for complex procedures such as verifiable delay functions (VDFs) and publicly-verifiable secret sharing (PVSS). This Bachelor's thesis presents a novel approach to randomized LE, leveraging a game-theoretic assumption that participants, aiming to be chosen as leaders, will naturally avoid actions that diminish their chances. This perspective simplifies LE by eliminating the need for decentralized RNG. Introducing PureLottery, inspired by single-elimination sports tournaments, this method offers a fair, bias-resistant, and efficient LE solution for blockchain environments. It operates on the principle of two participants competing in each match, rendering collusion efforts useless. PureLottery stands out for its low computational and communication complexity, suitable for smart contract implementation. It provides strong game-theoretic incentives for honesty and is robust against adversaries, ensuring no increase in election chances through dishonesty. The protocol guarantees that each honest player has at least a 1/n chance of winning, irrespective of adversary manipulation among the other n-1 participants. PureLottery can also address related problems like participant ranking, electing multiple leaders, and leader aversion, showcasing its versatility across various applications, including lotteries and blockchain protocols. An open-source implementation is made available for public use.
- Abstract(参考訳): リーダ選挙(LE)は分散システムとブロックチェーン技術において重要であり、ひとつの参加者がリーダとして行動することを保証する。
従来のLEメソッドは分散乱数生成(RNG)に依存しており、操作の脆弱性、公平性の欠如、検証遅延関数(VDF)や公開検証秘密共有(PVSS)といった複雑な手順の必要性といった問題に直面している。
この学説はランダム化されたLEに対する新しいアプローチを示し、ゲーム理論的な仮定を利用して、参加者がリーダーとして選ばれることを目指して、機会を減少させる行為を自然に避ける。
この観点は、分散RNGの必要性を排除してLEを単純化する。
PureLotteryの導入は、単一エリートスポーツトーナメントにインスパイアされたもので、ブロックチェーン環境に対して公正でバイアス耐性があり、効率的なLEソリューションを提供する。
それぞれの試合に出場する2人の参加者の原則に基づいて運営され、共謀の努力は役に立たない。
PureLotteryは計算と通信の複雑さが低く、スマートコントラクトの実装に適している。
誠実さに対するゲーム理論的な強いインセンティブを提供し、敵に対して堅牢であり、不正行為による選挙機会の増加を確実にする。
このプロトコルは、各正直なプレイヤーが、他のn-1参加者間の敵の操作にかかわらず、少なくとも1/nの確率で勝つことを保証している。
PureLotteryは、参加者のランク付け、複数のリーダの選択、リーダの逆転といった関連する問題にも対処できる。
オープンソース実装が一般公開されている。
関連論文リスト
- Protocol Learning, Decentralized Frontier Risk and the No-Off Problem [56.74434512241989]
私たちは第3のパラダイムであるプロトコル学習(Protocol Learning)を特定します。
このアプローチは、単一の集中型エンティティよりも桁違いに多くの計算資源を集約する可能性がある。
また、不均一で信頼性の低いノード、悪意のある参加者、インセンティブを維持するために抽出不可能なモデルの必要性、複雑なガバナンスのダイナミクスなど、新しい課題も導入されている。
論文 参考訳(メタデータ) (2024-12-10T19:53:50Z) - Simple and Provable Scaling Laws for the Test-Time Compute of Large Language Models [70.07661254213181]
大規模言語モデルのテスト時間計算のための2つの原理的アルゴリズムを提案する。
理論的には、1つのアルゴリズムの故障確率は、そのテスト時間計算が大きくなるにつれて指数関数的に減衰する。
論文 参考訳(メタデータ) (2024-11-29T05:29:47Z) - Tyche: Collateral-Free Coalition-Resistant Multiparty Lotteries with Arbitrary Payouts [23.27199615640474]
効率的な多人数抽選を行うためのプロトコル群であるTycheを提案する。
我々のプロトコルはコミット・アンド・リベラルなアプローチに基づいており、衝突耐性ハッシュ関数のみを必要とする。
私たちのプロトコルは安全で公平で、参加者のプライバシを保護しているものもあります。
論文 参考訳(メタデータ) (2024-09-05T12:19:37Z) - Profitable Manipulations of Cryptographic Self-Selection are Statistically Detectable [4.704825771757308]
本稿では,[CM19]で導入された標準暗号自己選択リーダー選択プロトコルの利益率操作の検出可能性について検討する。
我々は,$alpha frac3-sqrt52の総持分率0.38$のプレイヤーに対して,厳格に利益のある操作はすべて統計的に検出可能であることを示す。
論文 参考訳(メタデータ) (2024-07-24T02:34:01Z) - Decentralized Blockchain-based Robust Multi-agent Multi-armed Bandit [12.547006167704398]
我々は、悪意のある参加者の存在、すなわち、複数の参加者が完全に分散化されたブロックチェーン上に分散されるマルチエージェントのマルチエージェントバンディット問題の存在下で、ロバストな研究を行う。
私たちは、ブロックチェーンの高度なテクニックを協力的な意思決定フレームワークに組み込んで、正直な参加者のために最適な戦略を設計しました。
特に、提案アルゴリズムの理論的後悔を初めて証明し、その最適性を主張する。
論文 参考訳(メタデータ) (2024-02-06T21:33:34Z) - Building Random, Fair, and Verifiable Games on Blockchain. Raffle smart
contract designs on Sui Network [10.410456199908587]
本稿では,ブロックチェーン上での公正で検証可能な,効率的なスマートコントラクトゲームの設計に関する洞察を提供することを目的とする。
DRAND委員会ベースの分散ランダムビーコンや1つのプライベートキーベースの検証可能なランダム関数(VRF)など、スマートコントラクトにランダム性を実装する効率的な方法を検討する。
我々の発見は、スマートコントラクトでランダムで公正で検証可能なゲームを構築するための、将来の研究者や開発者にとって貴重なガイダンスを提供する。
論文 参考訳(メタデータ) (2023-10-18T20:12:44Z) - A Game-theoretic Approach for Provably-Uniform Random Number Generation in Decentralized Networks [0.6216023343793144]
ランダム性の分散生成のためのプロトコルを提供する。
無信頼であり、不偏乱数を生成する。
また、タンパー耐性があり、出力を変更したり、その分布に影響を与えない。
論文 参考訳(メタデータ) (2023-09-20T12:21:39Z) - Minimax-Optimal Multi-Agent RL in Zero-Sum Markov Games With a
Generative Model [50.38446482252857]
2人プレイのゼロサムマルコフゲームは多エージェント強化学習においておそらく最も基本的な設定である。
我々は,$$ widetildeObiggを用いて,$varepsilon$-approximate Markov NEポリシーを学習する学習アルゴリズムを開発した。
我々は、分散型量の役割を明確にするFTRLに対する洗練された後悔境界を導出する。
論文 参考訳(メタデータ) (2022-08-22T17:24:55Z) - Dual Lottery Ticket Hypothesis [71.95937879869334]
Lottery Ticket hypothesis (LTH)は、スパースネットワークトレーニングを調査し、その能力を維持するための新しい視点を提供する。
本稿では,LTHの当選チケットをトレーニング可能なサブネットワークとして,その性能をベンチマークとして検討する。
本稿では,簡単なスパースネットワークトレーニング戦略であるランダムスパースネットワークトランスフォーメーション(RST)を提案し,DLTHを裏付ける。
論文 参考訳(メタデータ) (2022-03-08T18:06:26Z) - Secure Distributed Training at Scale [65.7538150168154]
ピアの存在下でのトレーニングには、ビザンティン寛容な特殊な分散トレーニングアルゴリズムが必要である。
本稿では,コミュニケーション効率を重視したセキュアな(ビザンチン耐性)分散トレーニングのための新しいプロトコルを提案する。
論文 参考訳(メタデータ) (2021-06-21T17:00:42Z) - Multi-Stage Decentralized Matching Markets: Uncertain Preferences and
Strategic Behaviors [91.3755431537592]
本稿では、現実世界のマッチング市場で最適な戦略を学ぶためのフレームワークを開発する。
我々は,不確実性レベルが特徴の福祉対フェアネストレードオフが存在することを示す。
シングルステージマッチングと比較して、マルチステージマッチングで参加者がより良くなることを証明します。
論文 参考訳(メタデータ) (2021-02-13T19:25:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。