論文の概要: Natural Language Processing Methods for Symbolic Music Generation and
Information Retrieval: a Survey
- arxiv url: http://arxiv.org/abs/2402.17467v1
- Date: Tue, 27 Feb 2024 12:48:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-28 16:24:20.680117
- Title: Natural Language Processing Methods for Symbolic Music Generation and
Information Retrieval: a Survey
- Title(参考訳): シンボリック音楽生成と情報検索のための自然言語処理手法に関する調査
- Authors: Dinh-Viet-Toan Le, Louis Bigo, Mikaela Keller and Dorien Herremans
- Abstract要約: シンボリック・ミュージック・ジェネレーションと情報検索研究に応用されたNLP手法について検討する。
まず,自然言語の逐次表現から適応した記号音楽の表現について概説する。
我々はこれらのモデル、特に深層学習モデルについて、異なるプリズムを通して記述し、音楽に特化されたメカニズムを強調した。
- 参考スコア(独自算出の注目度): 6.416887247454113
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Several adaptations of Transformers models have been developed in various
domains since its breakthrough in Natural Language Processing (NLP). This trend
has spread into the field of Music Information Retrieval (MIR), including
studies processing music data. However, the practice of leveraging NLP tools
for symbolic music data is not novel in MIR. Music has been frequently compared
to language, as they share several similarities, including sequential
representations of text and music. These analogies are also reflected through
similar tasks in MIR and NLP. This survey reviews NLP methods applied to
symbolic music generation and information retrieval studies following two axes.
We first propose an overview of representations of symbolic music adapted from
natural language sequential representations. Such representations are designed
by considering the specificities of symbolic music. These representations are
then processed by models. Such models, possibly originally developed for text
and adapted for symbolic music, are trained on various tasks. We describe these
models, in particular deep learning models, through different prisms,
highlighting music-specialized mechanisms. We finally present a discussion
surrounding the effective use of NLP tools for symbolic music data. This
includes technical issues regarding NLP methods and fundamental differences
between text and music, which may open several doors for further research into
more effectively adapting NLP tools to symbolic MIR.
- Abstract(参考訳): 自然言語処理(NLP)におけるブレークスルー以来、トランスフォーマーモデルのいくつかの適応が様々な領域で開発されてきた。
この傾向は音楽データ処理の研究を含む音楽情報検索(MIR)の分野にも及んでいる。
しかし, シンボリックな音楽データにNLPツールを活用する実践は, MIRにおいて新しいものではない。
音楽は、テキストや音楽の逐次表現などいくつかの類似点を共有しているため、しばしば言語と比較される。
これらの類似は、MIRやNLPでも同様のタスクを通して反映される。
本調査では,2つの軸によるシンボリック音楽生成と情報検索に応用したNLP手法について検討する。
まず,自然言語の逐次表現から適応した記号音楽の表現について概説する。
このような表現は、象徴音楽の特異性を考慮して設計されている。
これらの表現はモデルによって処理される。
このようなモデルは、おそらく元々テキスト用に開発され、象徴音楽に適応したもので、様々なタスクで訓練されている。
これらのモデル、特にディープラーニングモデルについて、さまざまなプリズムを通じて説明し、音楽特化メカニズムを強調する。
最終的に、シンボリック音楽データに対するNLPツールの有効利用に関する議論を行う。
これには、NLPの手法に関する技術的な問題と、テキストと音楽の根本的な違いが含まれており、NLPツールをより効果的に記号的MIRに適応させるためのいくつかの扉を開く可能性がある。
関連論文リスト
- Enriching Music Descriptions with a Finetuned-LLM and Metadata for Text-to-Music Retrieval [7.7464988473650935]
Text-to-Music Retrievalは、広範な音楽データベース内のコンテンツ発見において重要な役割を担っている。
本稿では,TTMR++と呼ばれる改良されたテキスト・音楽検索モデルを提案する。
論文 参考訳(メタデータ) (2024-10-04T09:33:34Z) - MMT-BERT: Chord-aware Symbolic Music Generation Based on Multitrack Music Transformer and MusicBERT [44.204383306879095]
シンボリック・マルチトラック音楽生成に特化して設計された新しいシンボリック・ミュージック表現とジェネレーティブ・アディバーショナル・ネットワーク(GAN)フレームワークを提案する。
頑健なマルチトラック・ミュージック・ジェネレータを構築するため,事前学習したMusicBERTモデルを微調整して判別器として機能し,相対論的標準損失を取り入れた。
論文 参考訳(メタデータ) (2024-09-02T03:18:56Z) - MeLFusion: Synthesizing Music from Image and Language Cues using Diffusion Models [57.47799823804519]
私たちは、ミュージシャンが映画の脚本だけでなく、視覚化を通して音楽を作る方法にインスピレーションを受けています。
本稿では,テキスト記述と対応する画像からの手がかりを効果的に利用して音楽を合成するモデルであるMeLFusionを提案する。
音楽合成パイプラインに視覚情報を加えることで、生成した音楽の質が大幅に向上することを示す。
論文 参考訳(メタデータ) (2024-06-07T06:38:59Z) - MuPT: A Generative Symbolic Music Pretrained Transformer [56.09299510129221]
音楽の事前学習におけるLarge Language Models (LLM) の適用について検討する。
生成過程の異なるトラックからの不整合対策に関連する課題に対処するために,SMT-ABC Notation(Synchronized Multi-Track ABC Notation)を提案する。
私たちのコントリビューションには、最大8192個のトークンを処理可能な一連のモデルが含まれており、トレーニングセットの象徴的な音楽データの90%をカバーしています。
論文 参考訳(メタデータ) (2024-04-09T15:35:52Z) - From Words to Music: A Study of Subword Tokenization Techniques in
Symbolic Music Generation [1.9188864062289432]
サブワードのトークン化は、Transformerベースのモデルを用いたテキストベースの自然言語処理タスクで広く成功している。
楽後トークン化方式にサブワードトークン化を適用し,より長い曲を同時に生成できることを見出した。
本研究は,サブワードのトークン化が記号的音楽生成の有望な手法であり,作曲に広範な影響を及ぼす可能性を示唆している。
論文 参考訳(メタデータ) (2023-04-18T12:46:12Z) - A Dataset for Greek Traditional and Folk Music: Lyra [69.07390994897443]
本稿では,80時間程度で要約された1570曲を含むギリシャの伝統音楽と民俗音楽のデータセットについて述べる。
このデータセットにはYouTubeのタイムスタンプ付きリンクが組み込まれており、オーディオやビデオの検索や、インスツルメンテーション、地理、ジャンルに関する豊富なメタデータ情報が含まれている。
論文 参考訳(メタデータ) (2022-11-21T14:15:43Z) - Symphony Generation with Permutation Invariant Language Model [57.75739773758614]
変分不変言語モデルに基づくシンフォニーネットという記号的シンフォニー音楽生成ソリューションを提案する。
シンフォニートークンの超長いシーケンスをモデル化するためのバックボーンとして、新しいトランスフォーマーデコーダアーキテクチャが導入された。
実験結果から,提案手法は人間の構成と比べ,コヒーレント,新規,複雑,調和的な交響曲を生成できることが示唆された。
論文 参考訳(メタデータ) (2022-05-10T13:08:49Z) - MusicBERT: Symbolic Music Understanding with Large-Scale Pre-Training [97.91071692716406]
シンボリック・ミュージックの理解(シンボリック・ミュージックの理解)とは、シンボリック・データから音楽を理解することを指す。
MusicBERTは、音楽理解のための大規模な事前訓練モデルである。
論文 参考訳(メタデータ) (2021-06-10T10:13:05Z) - Optical Music Recognition: State of the Art and Major Challenges [0.0]
光音楽認識(OMR)は、楽譜を機械可読形式に変換することを目的としている。
書き起こされたコピーは、ミュージシャンが楽譜の写真を撮って作曲、演奏、編集を行えるようにする。
近年,従来のコンピュータビジョン技術から深層学習手法への移行が進んでいる。
論文 参考訳(メタデータ) (2020-06-14T12:40:17Z) - Embeddings as representation for symbolic music [0.0]
音楽の意味を含む方法で音楽のエンコードを可能にする表現技法は、コンピュータ音楽タスクのために訓練されたモデルの結果を改善する。
本稿では,データセットの3つの異なるバリエーションから音符を表現し,モデルが有用な音楽パターンを捉えることができるかどうかを解析するための埋め込み実験を行う。
論文 参考訳(メタデータ) (2020-05-19T13:04:02Z) - Multi-Modal Music Information Retrieval: Augmenting Audio-Analysis with
Visual Computing for Improved Music Video Analysis [91.3755431537592]
この論文は、音声分析とコンピュータビジョンを組み合わせて、マルチモーダルの観点から音楽情報検索(MIR)タスクにアプローチする。
本研究の主な仮説は、ジャンルやテーマなど特定の表現的カテゴリーを視覚的内容のみに基づいて認識できるという観察に基づいている。
実験は、3つのMIRタスクに対して行われ、アーティスト識別、音楽ジェネア分類、クロスジェネア分類を行う。
論文 参考訳(メタデータ) (2020-02-01T17:57:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。