Quantum Computing in Logistics and Supply Chain Management - an Overview
- URL: http://arxiv.org/abs/2402.17520v1
- Date: Tue, 27 Feb 2024 14:04:08 GMT
- Title: Quantum Computing in Logistics and Supply Chain Management - an Overview
- Authors: Frank Phillipson
- Abstract summary: The work explores the integration of quantum computing into logistics and supply chain management.
The paper provides an overview of quantum approaches to routing, logistic network design, fleet maintenance, cargo loading, prediction, and scheduling problems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The work explores the integration of quantum computing into logistics and
supply chain management, emphasising its potential for use in complex
optimisation problems. The discussion introduces quantum computing principles,
focusing on quantum annealing and gate-based quantum computing, with the
Quantum Approximate Optimisation Algorithm and Quantum Annealing as key
algorithmic approaches.
The paper provides an overview of quantum approaches to routing, logistic
network design, fleet maintenance, cargo loading, prediction, and scheduling
problems. Notably, most solutions in the literature are hybrid, combining
quantum and classical computing. The conclusion highlights the early stage of
quantum computing, emphasising its potential impact on logistics and supply
chain optimisation. In the final overview, the literature is categorised,
identifying quantum annealing dominance and a need for more research in
prediction and machine learning is highlighted. The consensus is that quantum
computing has great potential but faces current hardware limitations,
necessitating further advancements for practical implementation.
Related papers
- A Review of Quantum Scientific Computing Algorithms for Engineering Problems [0.0]
Quantum computing, leveraging quantum phenomena like superposition and entanglement, is emerging as a transformative force in computing technology.
This paper systematically explores the foundational concepts of quantum mechanics and their implications for computational advancements.
arXiv Detail & Related papers (2024-08-25T21:40:22Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - A Practitioner's Guide to Quantum Algorithms for Optimisation Problems [0.0]
NP-hard optimisation problems are common in industrial areas such as logistics and finance.
This paper aims to provide a comprehensive overview of the theory of quantum optimisation techniques.
It focuses on their near-term potential for noisy intermediate scale quantum devices.
arXiv Detail & Related papers (2023-05-12T08:57:36Z) - iQuantum: A Case for Modeling and Simulation of Quantum Computing
Environments [22.068803245816266]
iQuantum is a first-of-its-kind simulation toolkit that can model hybrid quantum-classical computing environments.
This paper presents the quantum computing system model, architectural design, proof-of-concept implementation, potential use cases, and future development of iQuantum.
arXiv Detail & Related papers (2023-03-28T04:51:32Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - DQC$^2$O: Distributed Quantum Computing for Collaborative Optimization
in Future Networks [54.03701670739067]
We propose an adaptive distributed quantum computing approach to manage quantum computers and quantum channels for solving optimization tasks in future networks.
Based on the proposed approach, we discuss the potential applications for collaborative optimization in future networks, such as smart grid management, IoT cooperation, and UAV trajectory planning.
arXiv Detail & Related papers (2022-09-16T02:44:52Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Resource Allocation in Quantum Networks for Distributed Quantum
Computing [0.0]
Current trend suggests that quantum computing will become available at scale for commercial purposes in the near future.
Quantum Internet requires the interconnection of quantum computers by quantum links and repeaters to exchange entangled quantum bits.
This paper investigates the requirements and objectives of smart computing on distributed nodes from the perspective of quantum network provisioning.
arXiv Detail & Related papers (2022-03-11T10:46:31Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.