Learning Topological Representations with Bidirectional Graph Attention Network for Solving Job Shop Scheduling Problem
- URL: http://arxiv.org/abs/2402.17606v3
- Date: Wed, 5 Jun 2024 06:19:06 GMT
- Title: Learning Topological Representations with Bidirectional Graph Attention Network for Solving Job Shop Scheduling Problem
- Authors: Cong Zhang, Zhiguang Cao, Yaoxin Wu, Wen Song, Jing Sun,
- Abstract summary: Existing learning-based methods for solving job shop scheduling problems (JSSP) usually use off-the-shelf GNN models tailored to undirected graphs and neglect the rich and meaningful topological structures of disjunctive graphs (DGs)
This paper proposes the topology-aware bidirectional graph attention network (TBGAT) to embed the DG for solving JSSP in a local search framework.
- Score: 27.904195034688257
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing learning-based methods for solving job shop scheduling problems (JSSP) usually use off-the-shelf GNN models tailored to undirected graphs and neglect the rich and meaningful topological structures of disjunctive graphs (DGs). This paper proposes the topology-aware bidirectional graph attention network (TBGAT), a novel GNN architecture based on the attention mechanism, to embed the DG for solving JSSP in a local search framework. Specifically, TBGAT embeds the DG from a forward and a backward view, respectively, where the messages are propagated by following the different topologies of the views and aggregated via graph attention. Then, we propose a novel operator based on the message-passing mechanism to calculate the forward and backward topological sorts of the DG, which are the features for characterizing the topological structures and exploited by our model. In addition, we theoretically and experimentally show that TBGAT has linear computational complexity to the number of jobs and machines, respectively, strengthening our method's practical value. Besides, extensive experiments on five synthetic datasets and seven classic benchmarks show that TBGAT achieves new SOTA results by outperforming a wide range of neural methods by a large margin. All the code and data are publicly available online at https://github.com/zcaicaros/TBGAT.
Related papers
- TANGNN: a Concise, Scalable and Effective Graph Neural Networks with Top-m Attention Mechanism for Graph Representation Learning [7.879217146851148]
We propose an innovative Graph Neural Network (GNN) architecture that integrates a Top-m attention mechanism aggregation component and a neighborhood aggregation component.
To assess the effectiveness of our proposed model, we have applied it to citation sentiment prediction, a novel task previously unexplored in the GNN field.
arXiv Detail & Related papers (2024-11-23T05:31:25Z) - Representation Learning on Heterophilic Graph with Directional
Neighborhood Attention [8.493802098034255]
Graph Attention Network (GAT) is one of the most popular Graph Neural Network (GNN) architecture.
GAT lacks the ability to capture long-range and global graph information, leading to unsatisfactory performance on some datasets.
We propose Directional Graph Attention Network (DGAT) to combine the feature-based attention with the global directional information extracted from the graph topology.
arXiv Detail & Related papers (2024-03-03T10:59:16Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
Large-scale graph training is a notoriously challenging problem for graph neural networks (GNNs)
We present a new ensembling training manner, named EnGCN, to address the existing issues.
Our proposed method has achieved new state-of-the-art (SOTA) performance on large-scale datasets.
arXiv Detail & Related papers (2022-10-14T03:43:05Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
We propose a graph gradual pruning framework termed CGP to dynamically prune GNNs.
Unlike LTH-based methods, the proposed CGP approach requires no re-training, which significantly reduces the computation costs.
Our proposed strategy greatly improves both training and inference efficiency while matching or even exceeding the accuracy of existing methods.
arXiv Detail & Related papers (2022-07-18T14:23:31Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
We propose Automatic Relation-aware Graph Network Proliferation (ARGNP) for efficiently searching GNNs.
These operations can extract hierarchical node/relational information and provide anisotropic guidance for message passing on a graph.
Experiments on six datasets for four graph learning tasks demonstrate that GNNs produced by our method are superior to the current state-of-the-art hand-crafted and search-based GNNs.
arXiv Detail & Related papers (2022-05-31T10:38:04Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
We propose PTDNet, a parameterized topological denoising network, to improve the robustness and generalization performance of Graph Neural Networks (GNNs)
PTDNet prunes task-irrelevant edges by penalizing the number of edges in the sparsified graph with parameterized networks.
We show that PTDNet can improve the performance of GNNs significantly and the performance gain becomes larger for more noisy datasets.
arXiv Detail & Related papers (2020-11-13T18:53:21Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
We propose a novel Hierarchical Message-passing Graph Neural Networks framework.
Key idea is generating a hierarchical structure that re-organises all nodes in a flat graph into multi-level super graphs.
We present the first model to implement this framework, termed Hierarchical Community-aware Graph Neural Network (HC-GNN)
arXiv Detail & Related papers (2020-09-08T13:11:07Z) - CAGNN: Cluster-Aware Graph Neural Networks for Unsupervised Graph
Representation Learning [19.432449825536423]
Unsupervised graph representation learning aims to learn low-dimensional node embeddings without supervision.
We present a novel cluster-aware graph neural network (CAGNN) model for unsupervised graph representation learning using self-supervised techniques.
arXiv Detail & Related papers (2020-09-03T13:57:18Z) - Graph Neural Networks Including Sparse Interpretability [0.0]
We present a model-agnostic framework for interpreting important graph structure and node features.
Our GISST models achieve superior node feature and edge explanation precision in synthetic datasets.
arXiv Detail & Related papers (2020-06-30T21:35:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.