Masked Gamma-SSL: Learning Uncertainty Estimation via Masked Image
Modeling
- URL: http://arxiv.org/abs/2402.17622v1
- Date: Tue, 27 Feb 2024 15:49:54 GMT
- Title: Masked Gamma-SSL: Learning Uncertainty Estimation via Masked Image
Modeling
- Authors: David S. W. Williams, Matthew Gadd, Paul Newman and Daniele De Martini
- Abstract summary: This work proposes a semantic segmentation network that produces high-quality uncertainty estimates in a single forward pass.
We exploit general representations from foundation models and unlabelled datasets through a Masked Image Modeling (MIM) approach.
For neural networks used in safety-critical applications, bias in the training data can lead to errors.
- Score: 19.000718685399935
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work proposes a semantic segmentation network that produces high-quality
uncertainty estimates in a single forward pass. We exploit general
representations from foundation models and unlabelled datasets through a Masked
Image Modeling (MIM) approach, which is robust to augmentation hyper-parameters
and simpler than previous techniques. For neural networks used in
safety-critical applications, bias in the training data can lead to errors;
therefore it is crucial to understand a network's limitations at run time and
act accordingly. To this end, we test our proposed method on a number of test
domains including the SAX Segmentation benchmark, which includes labelled test
data from dense urban, rural and off-road driving domains. The proposed method
consistently outperforms uncertainty estimation and Out-of-Distribution (OoD)
techniques on this difficult benchmark.
Related papers
- Robust Zero-Shot Crowd Counting and Localization With Adaptive Resolution SAM [55.93697196726016]
We propose a simple yet effective crowd counting method by utilizing the Segment-Everything-Everywhere Model (SEEM)
We show that SEEM's performance in dense crowd scenes is limited, primarily due to the omission of many persons in high-density areas.
Our proposed method achieves the best unsupervised performance in crowd counting, while also being comparable to some supervised methods.
arXiv Detail & Related papers (2024-02-27T13:55:17Z) - Pixel-wise Gradient Uncertainty for Convolutional Neural Networks
applied to Out-of-Distribution Segmentation [0.43512163406552007]
We present a method for obtaining uncertainty scores from pixel-wise loss gradients which can be computed efficiently during inference.
Our experiments show the ability of our method to identify wrong pixel classifications and to estimate prediction quality at negligible computational overhead.
arXiv Detail & Related papers (2023-03-13T08:37:59Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
Cross-domain keypoint detection methods always require accessing the source data during adaptation.
This paper considers source-free domain adaptive keypoint detection, where only the well-trained source model is provided to the target domain.
arXiv Detail & Related papers (2023-02-09T12:06:08Z) - Modeling Multimodal Aleatoric Uncertainty in Segmentation with Mixture
of Stochastic Expert [24.216869988183092]
We focus on capturing the data-inherent uncertainty (aka aleatoric uncertainty) in segmentation, typically when ambiguities exist in input images.
We propose a novel mixture of experts (MoSE) model, where each expert network estimates a distinct mode of aleatoric uncertainty.
We develop a Wasserstein-like loss that directly minimizes the distribution distance between the MoSE and ground truth annotations.
arXiv Detail & Related papers (2022-12-14T16:48:21Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.