ConformalSAM: Unlocking the Potential of Foundational Segmentation Models in Semi-Supervised Semantic Segmentation with Conformal Prediction
- URL: http://arxiv.org/abs/2507.15803v1
- Date: Mon, 21 Jul 2025 17:02:57 GMT
- Title: ConformalSAM: Unlocking the Potential of Foundational Segmentation Models in Semi-Supervised Semantic Segmentation with Conformal Prediction
- Authors: Danhui Chen, Ziquan Liu, Chuxi Yang, Dan Wang, Yan Yan, Yi Xu, Xiangyang Ji,
- Abstract summary: This work explores whether a foundational segmentation model can address label scarcity in the pixel-level vision task as an annotator for unlabeled images.<n>We propose ConformalSAM, a novel SSSS framework which first calibrates the foundation model using the target domain's labeled data and then filters out unreliable pixel labels of unlabeled data.
- Score: 57.930531826380836
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pixel-level vision tasks, such as semantic segmentation, require extensive and high-quality annotated data, which is costly to obtain. Semi-supervised semantic segmentation (SSSS) has emerged as a solution to alleviate the labeling burden by leveraging both labeled and unlabeled data through self-training techniques. Meanwhile, the advent of foundational segmentation models pre-trained on massive data, has shown the potential to generalize across domains effectively. This work explores whether a foundational segmentation model can address label scarcity in the pixel-level vision task as an annotator for unlabeled images. Specifically, we investigate the efficacy of using SEEM, a Segment Anything Model (SAM) variant fine-tuned for textual input, to generate predictive masks for unlabeled data. To address the shortcomings of using SEEM-generated masks as supervision, we propose ConformalSAM, a novel SSSS framework which first calibrates the foundation model using the target domain's labeled data and then filters out unreliable pixel labels of unlabeled data so that only high-confidence labels are used as supervision. By leveraging conformal prediction (CP) to adapt foundation models to target data through uncertainty calibration, ConformalSAM exploits the strong capability of the foundational segmentation model reliably which benefits the early-stage learning, while a subsequent self-reliance training strategy mitigates overfitting to SEEM-generated masks in the later training stage. Our experiment demonstrates that, on three standard benchmarks of SSSS, ConformalSAM achieves superior performance compared to recent SSSS methods and helps boost the performance of those methods as a plug-in.
Related papers
- Segment Concealed Objects with Incomplete Supervision [63.637733655439334]
Incompletely-Supervised Concealed Object (ISCOS) involves segmenting objects that seamlessly blend into their surrounding environments.<n>This task remains highly challenging due to the limited supervision provided by the incompletely annotated training data.<n>In this paper, we introduce the first unified method for ISCOS to address these challenges.
arXiv Detail & Related papers (2025-06-10T16:25:15Z) - S^4M: Boosting Semi-Supervised Instance Segmentation with SAM [25.94737539065708]
Semi-supervised instance segmentation poses challenges due to limited labeled data.<n>Current teacher-student frameworks still suffer from performance constraints due to unreliable pseudo-label quality.
arXiv Detail & Related papers (2025-04-07T17:59:10Z) - Promptable Anomaly Segmentation with SAM Through Self-Perception Tuning [63.55145330447408]
We propose a novel textbfSelf-textbfPerceptinon textbfTuning (textbfSPT) method for anomaly segmentation.<n>The SPT method incorporates a self-drafting tuning strategy, which generates an initial coarse draft of the anomaly mask, followed by a refinement process.
arXiv Detail & Related papers (2024-11-26T08:33:25Z) - Adapting Segment Anything Model for Unseen Object Instance Segmentation [70.60171342436092]
Unseen Object Instance (UOIS) is crucial for autonomous robots operating in unstructured environments.
We propose UOIS-SAM, a data-efficient solution for the UOIS task.
UOIS-SAM integrates two key components: (i) a Heatmap-based Prompt Generator (HPG) to generate class-agnostic point prompts with precise foreground prediction, and (ii) a Hierarchical Discrimination Network (HDNet) that adapts SAM's mask decoder.
arXiv Detail & Related papers (2024-09-23T19:05:50Z) - SAM-Driven Weakly Supervised Nodule Segmentation with Uncertainty-Aware Cross Teaching [13.5553526185399]
Automated nodule segmentation is essential for computer-assisted diagnosis in ultrasound images.
Recently, segmentation foundation models like SAM have shown impressive generalizability on natural images.
In this work, we devise a novel weakly supervised framework that effectively utilizes the segmentation foundation model to generate pseudo-labels.
arXiv Detail & Related papers (2024-07-18T14:27:54Z) - Masked Gamma-SSL: Learning Uncertainty Estimation via Masked Image
Modeling [19.000718685399935]
This work proposes a semantic segmentation network that produces high-quality uncertainty estimates in a single forward pass.
We exploit general representations from foundation models and unlabelled datasets through a Masked Image Modeling (MIM) approach.
For neural networks used in safety-critical applications, bias in the training data can lead to errors.
arXiv Detail & Related papers (2024-02-27T15:49:54Z) - CAFS: Class Adaptive Framework for Semi-Supervised Semantic Segmentation [5.484296906525601]
Semi-supervised semantic segmentation learns a model for classifying pixels into specific classes using a few labeled samples and numerous unlabeled images.
We propose a class-adaptive semisupervision framework for semi-supervised semantic segmentation (CAFS)
CAFS constructs a validation set on a labeled dataset, to leverage the calibration performance for each class.
arXiv Detail & Related papers (2023-03-21T05:56:53Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
Cross-domain keypoint detection methods always require accessing the source data during adaptation.
This paper considers source-free domain adaptive keypoint detection, where only the well-trained source model is provided to the target domain.
arXiv Detail & Related papers (2023-02-09T12:06:08Z) - Novel Class Discovery in Semantic Segmentation [104.30729847367104]
We introduce a new setting of Novel Class Discovery in Semantic (NCDSS)
It aims at segmenting unlabeled images containing new classes given prior knowledge from a labeled set of disjoint classes.
In NCDSS, we need to distinguish the objects and background, and to handle the existence of multiple classes within an image.
We propose the Entropy-based Uncertainty Modeling and Self-training (EUMS) framework to overcome noisy pseudo-labels.
arXiv Detail & Related papers (2021-12-03T13:31:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.