論文の概要: Quantum Circuit Discovery for Fault-Tolerant Logical State Preparation with Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2402.17761v2
- Date: Fri, 17 May 2024 16:13:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-20 18:22:03.495819
- Title: Quantum Circuit Discovery for Fault-Tolerant Logical State Preparation with Reinforcement Learning
- Title(参考訳): 強化学習によるフォールトトレラント論理状態生成のための量子回路探索
- Authors: Remmy Zen, Jan Olle, Luis Colmenarez, Matteo Puviani, Markus Müller, Florian Marquardt,
- Abstract要約: 本稿では,コンパクトかつハードウェア対応のフォールトトレラント量子回路を自動検出する強化学習を提案する。
耐故障性論理状態作成のタスクにおいて、RLは最大15個の物理量子ビットのハードウェア制約を伴わない結果よりも、ゲートと補助量子ビットの少ない回路を発見する。
- 参考スコア(独自算出の注目度): 1.1891349121931318
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The realization of large-scale quantum computers requires not only quantum error correction (QEC) but also fault-tolerant operations to handle errors that propagate into harmful errors. Recently, flag-based protocols have been introduced that use ancillary qubits to flag harmful errors. However, there is no clear recipe for finding a fault-tolerant quantum circuit with flag-based protocols, especially when we consider hardware constraints, such as qubit connectivity and available gate set. In this work, we propose and explore reinforcement learning (RL) to automatically discover compact and hardware-adapted fault-tolerant quantum circuits. We show that in the task of fault-tolerant logical state preparation, RL discovers circuits with fewer gates and ancillary qubits than published results without and with hardware constraints of up to 15 physical qubits. Furthermore, RL allows for straightforward exploration of different qubit connectivities and the use of transfer learning to accelerate the discovery. More generally, our work opens the door towards the use of RL for the discovery of fault-tolerant quantum circuits for addressing tasks beyond state preparation, including magic state preparation, logical gate synthesis, or syndrome measurement.
- Abstract(参考訳): 大規模量子コンピュータの実現には、量子エラー訂正(QEC)だけでなく、有害なエラーに伝播するエラーを処理するためのフォールトトレラントな操作も必要である。
近年、アシラリーキュービットを使用して有害なエラーをフラグするフラグベースのプロトコルが導入されている。
しかし、フラグベースのプロトコルを持つフォールトトレラント量子回路を見つけるための明確なレシピは、特に量子ビット接続や利用可能なゲートセットといったハードウェア制約を考慮すると、存在しない。
本研究では,コンパクトかつハードウェア対応のフォールトトレラント量子回路を自動検出する強化学習(RL)を提案する。
耐故障性論理状態作成のタスクにおいて、RLは最大15個の物理量子ビットのハードウェア制約を伴わない結果よりも、ゲートと補助量子ビットの少ない回路を発見する。
さらに、RLは異なる量子ビット接続性を簡単に探索し、発見を加速するために転送学習を使用することができる。
より一般的に、我々の研究は、マジック状態の準備、論理ゲート合成、シンドローム測定など、状態準備以上の課題に対処するためのフォールトトレラント量子回路の発見にRLを使用するための扉を開く。
関連論文リスト
- Algorithmic Fault Tolerance for Fast Quantum Computing [37.448838730002905]
本研究では,幅広い種類の量子コードに対して,一定の時間オーバーヘッドでフォールトトレラントな論理演算を実行できることを示す。
理想的な測定結果分布からの偏差をコード距離で指数関数的に小さくできることを示す。
我々の研究は、フォールトトレランスの理論に新たな光を当て、実用的なフォールトトレラント量子計算の時空間コストを桁違いに削減する可能性がある。
論文 参考訳(メタデータ) (2024-06-25T15:43:25Z) - Transversal CNOT gate with multi-cycle error correction [1.7359033750147501]
スケーラブルでプログラム可能な量子コンピュータは、コンピュータが合理的な時間枠で達成できない計算集約的なタスクを解く可能性を持ち、量子優位性を達成する。
現在の量子プロセッサのエラーに対する脆弱性は、実用的な問題に必要な複雑で深い量子回路の実行に重大な課題をもたらす。
我々の研究は、現在の世代の量子ハードウェアを用いた超伝導体ベースのプロセッサにおいて、論理的CNOTゲートとエラー検出を併用できる可能性を確立した。
論文 参考訳(メタデータ) (2024-06-18T04:50:15Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - Low-density parity-check representation of fault-tolerant quantum circuits [5.064729356056529]
フォールトトレラント量子コンピューティングでは、量子アルゴリズムは誤り訂正が可能な量子回路によって実装される。
本稿では,フォールトトレラント量子回路の設計と解析を行うツールキットを提案する。
論文 参考訳(メタデータ) (2024-03-15T12:56:38Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Fault-tolerant operation of a logical qubit in a diamond quantum
processor [0.21670084965090575]
ダイヤモンド中のスピン量子ビットを用いた論理量子ビット上のフォールトトレラント動作を実演する。
論理量子ビットレベルでのフォールトトレラントプロトコルの実現は、大規模量子情報処理の鍵となるステップである。
論文 参考訳(メタデータ) (2021-08-03T17:39:25Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
耐故障性ウェイト4パリティチェック測定方式を実験的に実証した。
フラグ条件パリティ測定の単発忠実度は93.2(2)%である。
このスキームは、安定化器量子誤り訂正プロトコルの幅広いクラスにおいて必須な構成要素である。
論文 参考訳(メタデータ) (2021-07-13T20:08:04Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
本稿では、電波トラップで閉じ込められた1本のイオン列をベースとした量子計算アーキテクチャにおけるクロストーク誤差の研究を行い、個別に調整されたレーザービームで操作する。
この種の誤差は、理想的には、異なるアクティブな量子ビットのセットで処理される単一量子ゲートと2量子ビットの量子ゲートが適用されている間は、未修正のままであるオブザーバー量子ビットに影響を及ぼす。
我々は,第1原理からクロストーク誤りを微視的にモデル化し,コヒーレント対非コヒーレントなエラーモデリングの重要性を示す詳細な研究を行い,ゲートレベルでクロストークを積極的に抑制するための戦略について議論する。
論文 参考訳(メタデータ) (2020-12-21T14:20:40Z) - Optical demonstration of quantum fault-tolerant threshold [2.6098148548199047]
実用的な量子計算における大きな課題は、量子システムと環境との相互作用によって引き起こされる不可解な誤りである。
論理量子ビットをいくつかの物理量子ビットで符号化したフォールトトレラントスキームは、誤りの存在下で論理量子ビットの正しい出力を可能にする。
本稿では,特殊耐故障プロトコルにおけるしきい値の存在を実験的に実証する。
論文 参考訳(メタデータ) (2020-12-16T13:23:29Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
ノイズチャネルの多くの用途でメッセージを確実に送信するために、回路をエンコードしてデコードする。
すべての量子チャネル$T$とすべての$eps>0$に対して、以下に示すゲートエラー確率のしきい値$p(epsilon,T)$が存在し、$C-epsilon$より大きいレートはフォールトトレラント的に達成可能である。
我々の結果は、遠方の量子コンピュータが高レベルのノイズの下で通信する必要があるような、大きな距離での通信やオンチップでの通信に関係している。
論文 参考訳(メタデータ) (2020-09-15T15:10:50Z) - Deterministic correction of qubit loss [48.43720700248091]
量子ビットの損失は、大規模かつフォールトトレラントな量子情報プロセッサに対する根本的な障害の1つである。
トポロジカル曲面符号の最小インスタンスに対して、量子ビット損失検出と補正の完全なサイクルの実装を実験的に実証した。
論文 参考訳(メタデータ) (2020-02-21T19:48:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。