Opening Articulated Objects in the Real World
- URL: http://arxiv.org/abs/2402.17767v2
- Date: Thu, 13 Feb 2025 18:59:11 GMT
- Title: Opening Articulated Objects in the Real World
- Authors: Arjun Gupta, Michelle Zhang, Rishik Sathua, Saurabh Gupta,
- Abstract summary: This work uses opening of articulated objects as a mobile manipulation testbed.<n>We first develop a system for this task, and then conduct 100+ end-to-end system tests across 13 real world test sites.<n>Our large-scale study reveals a number of surprising findings.
- Score: 14.662907097496184
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: What does it take to build mobile manipulation systems that can competently operate on previously unseen objects in previously unseen environments? This work answers this question using opening of articulated objects as a mobile manipulation testbed. Specifically, our focus is on the end-to-end performance on this task without any privileged information, i.e. the robot starts at a location with the novel target articulated object in view, and has to approach the object and successfully open it. We first develop a system for this task, and then conduct 100+ end-to-end system tests across 13 real world test sites. Our large-scale study reveals a number of surprising findings: a) modular systems outperform end-to-end learned systems for this task, even when the end-to-end learned systems are trained on 1000+ demonstrations, b) perception, and not precise end-effector control, is the primary bottleneck to task success, and c) state-of-the-art articulation parameter estimation models developed in isolation struggle when faced with robot-centric viewpoints. Overall, our findings highlight the limitations of developing components of the pipeline in isolation and underscore the need for system-level research, providing a pragmatic roadmap for building generalizable mobile manipulation systems. Videos, code, and models are available on the project website: https://arjung128.github.io/opening-articulated-objects/
Related papers
- Interacted Object Grounding in Spatio-Temporal Human-Object Interactions [70.8859442754261]
We introduce a new open-world benchmark: Grounding Interacted Objects (GIO)
An object grounding task is proposed expecting vision systems to discover interacted objects.
We propose a 4D question-answering framework (4D-QA) to discover interacted objects from diverse videos.
arXiv Detail & Related papers (2024-12-27T09:08:46Z) - QuadWBG: Generalizable Quadrupedal Whole-Body Grasping [7.802964645500815]
We present a modular framework for robust whole-body loco-manipulation controller based on a single arm-mounted camera.
The proposed system achieves state-of-the-art one-time grasping accuracy of 89% in the real world.
arXiv Detail & Related papers (2024-11-11T08:19:54Z) - Helpful DoggyBot: Open-World Object Fetching using Legged Robots and Vision-Language Models [63.89598561397856]
We present a system for quadrupedal mobile manipulation in indoor environments.
It uses a front-mounted gripper for object manipulation, a low-level controller trained in simulation using egocentric depth for agile skills.
We evaluate our system in two unseen environments without any real-world data collection or training.
arXiv Detail & Related papers (2024-09-30T20:58:38Z) - Learning Manipulation by Predicting Interaction [85.57297574510507]
We propose a general pre-training pipeline that learns Manipulation by Predicting the Interaction.
The experimental results demonstrate that MPI exhibits remarkable improvement by 10% to 64% compared with previous state-of-the-art in real-world robot platforms.
arXiv Detail & Related papers (2024-06-01T13:28:31Z) - World Models for General Surgical Grasping [7.884835348797252]
We propose a world-model-based deep reinforcement learning framework "Grasp Anything for Surgery" (GAS)
We learn a pixel-level visuomotor policy for surgical grasping, enhancing both generality and robustness.
Our system also demonstrates significant robustness across 6 conditions including background variation, target disturbance, camera pose variation, kinematic control error, image noise, and re-grasping after the gripped target object drops from the gripper.
arXiv Detail & Related papers (2024-05-28T08:11:12Z) - Object Detectors in the Open Environment: Challenges, Solutions, and Outlook [95.3317059617271]
The dynamic and intricate nature of the open environment poses novel and formidable challenges to object detectors.
This paper aims to conduct a comprehensive review and analysis of object detectors in open environments.
We propose a framework that includes four quadrants (i.e., out-of-domain, out-of-category, robust learning, and incremental learning) based on the dimensions of the data / target changes.
arXiv Detail & Related papers (2024-03-24T19:32:39Z) - Floor extraction and door detection for visually impaired guidance [78.94595951597344]
Finding obstacle-free paths in unknown environments is a big navigation issue for visually impaired people and autonomous robots.
New devices based on computer vision systems can help impaired people to overcome the difficulties of navigating in unknown environments in safe conditions.
In this work it is proposed a combination of sensors and algorithms that can lead to the building of a navigation system for visually impaired people.
arXiv Detail & Related papers (2024-01-30T14:38:43Z) - Adaptive Mobile Manipulation for Articulated Objects In the Open World [37.34288363863099]
We introduce Open-World Mobile Manipulation System to tackle realistic articulated object operation.
The system is able to increase success rate from 50% of BC pre-training to 95% using online adaptation.
arXiv Detail & Related papers (2024-01-25T18:59:44Z) - AffordanceLLM: Grounding Affordance from Vision Language Models [36.97072698640563]
Affordance grounding refers to the task of finding the area of an object with which one can interact.
Much of the knowledge is hidden and beyond the image content with the supervised labels from a limited training set.
We make an attempt to improve the generalization capability of the current affordance grounding by taking the advantage of the rich world, abstract, and human-object-interaction knowledge.
arXiv Detail & Related papers (2024-01-12T03:21:02Z) - What Makes Pre-Trained Visual Representations Successful for Robust
Manipulation? [57.92924256181857]
We find that visual representations designed for manipulation and control tasks do not necessarily generalize under subtle changes in lighting and scene texture.
We find that emergent segmentation ability is a strong predictor of out-of-distribution generalization among ViT models.
arXiv Detail & Related papers (2023-11-03T18:09:08Z) - WALL-E: Embodied Robotic WAiter Load Lifting with Large Language Model [92.90127398282209]
This paper investigates the potential of integrating the most recent Large Language Models (LLMs) and existing visual grounding and robotic grasping system.
We introduce the WALL-E (Embodied Robotic WAiter load lifting with Large Language model) as an example of this integration.
We deploy this LLM-empowered system on the physical robot to provide a more user-friendly interface for the instruction-guided grasping task.
arXiv Detail & Related papers (2023-08-30T11:35:21Z) - DexTransfer: Real World Multi-fingered Dexterous Grasping with Minimal
Human Demonstrations [51.87067543670535]
We propose a robot-learning system that can take a small number of human demonstrations and learn to grasp unseen object poses.
We train a dexterous grasping policy that takes the point clouds of the object as input and predicts continuous actions to grasp objects from different initial robot states.
The policy learned from our dataset can generalize well on unseen object poses in both simulation and the real world.
arXiv Detail & Related papers (2022-09-28T17:51:49Z) - Robot Active Neural Sensing and Planning in Unknown Cluttered
Environments [0.0]
Active sensing and planning in unknown, cluttered environments is an open challenge for robots intending to provide home service, search and rescue, narrow-passage inspection, and medical assistance.
We present the active neural sensing approach that generates the kinematically feasible viewpoint sequences for the robot manipulator with an in-hand camera to gather the minimum number of observations needed to reconstruct the underlying environment.
Our framework actively collects the visual RGBD observations, aggregates them into scene representation, and performs object shape inference to avoid unnecessary robot interactions with the environment.
arXiv Detail & Related papers (2022-08-23T16:56:54Z) - Rapid Exploration for Open-World Navigation with Latent Goal Models [78.45339342966196]
We describe a robotic learning system for autonomous exploration and navigation in diverse, open-world environments.
At the core of our method is a learned latent variable model of distances and actions, along with a non-parametric topological memory of images.
We use an information bottleneck to regularize the learned policy, giving us (i) a compact visual representation of goals, (ii) improved generalization capabilities, and (iii) a mechanism for sampling feasible goals for exploration.
arXiv Detail & Related papers (2021-04-12T23:14:41Z) - ViNG: Learning Open-World Navigation with Visual Goals [82.84193221280216]
We propose a learning-based navigation system for reaching visually indicated goals.
We show that our system, which we call ViNG, outperforms previously-proposed methods for goal-conditioned reinforcement learning.
We demonstrate ViNG on a number of real-world applications, such as last-mile delivery and warehouse inspection.
arXiv Detail & Related papers (2020-12-17T18:22:32Z) - Reactive Human-to-Robot Handovers of Arbitrary Objects [57.845894608577495]
We present a vision-based system that enables human-to-robot handovers of unknown objects.
Our approach combines closed-loop motion planning with real-time, temporally-consistent grasp generation.
We demonstrate the generalizability, usability, and robustness of our approach on a novel benchmark set of 26 diverse household objects.
arXiv Detail & Related papers (2020-11-17T21:52:22Z) - A Long Horizon Planning Framework for Manipulating Rigid Pointcloud
Objects [25.428781562909606]
We present a framework for solving long-horizon planning problems involving manipulation of rigid objects.
Our method plans in the space of object subgoals and frees the planner from reasoning about robot-object interaction dynamics.
arXiv Detail & Related papers (2020-11-16T18:59:33Z) - Learning Object-Based State Estimators for Household Robots [11.055133590909097]
We build object-based memory systems that operate on high-dimensional observations and hypotheses.
We demonstrate the system's effectiveness in maintaining memory of dynamically changing objects in both simulated environment and real images.
arXiv Detail & Related papers (2020-11-06T04:18:52Z) - Distributed Reinforcement Learning of Targeted Grasping with Active
Vision for Mobile Manipulators [4.317864702902075]
We present the first RL-based system for a mobile manipulator that can (a) achieve targeted grasping generalizing to unseen target objects, (b) learn complex grasping strategies for cluttered scenes with occluded objects, and (c) perform active vision through its movable wrist camera to better locate objects.
We train and evaluate our system in a simulated environment, identify key components for improving performance, analyze its behaviors, and transfer to a real-world setup.
arXiv Detail & Related papers (2020-07-16T02:47:48Z) - The Ingredients of Real-World Robotic Reinforcement Learning [71.92831985295163]
We discuss the elements that are needed for a robotic learning system that can continually and autonomously improve with data collected in the real world.
We propose a particular instantiation of such a system, using dexterous manipulation as our case study.
We demonstrate that our complete system can learn without any human intervention, acquiring a variety of vision-based skills with a real-world three-fingered hand.
arXiv Detail & Related papers (2020-04-27T03:36:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.