Adaptive Mobile Manipulation for Articulated Objects In the Open World
- URL: http://arxiv.org/abs/2401.14403v2
- Date: Sun, 28 Jan 2024 18:58:29 GMT
- Title: Adaptive Mobile Manipulation for Articulated Objects In the Open World
- Authors: Haoyu Xiong, Russell Mendonca, Kenneth Shaw, Deepak Pathak
- Abstract summary: We introduce Open-World Mobile Manipulation System to tackle realistic articulated object operation.
The system is able to increase success rate from 50% of BC pre-training to 95% using online adaptation.
- Score: 37.34288363863099
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deploying robots in open-ended unstructured environments such as homes has
been a long-standing research problem. However, robots are often studied only
in closed-off lab settings, and prior mobile manipulation work is restricted to
pick-move-place, which is arguably just the tip of the iceberg in this area. In
this paper, we introduce Open-World Mobile Manipulation System, a full-stack
approach to tackle realistic articulated object operation, e.g. real-world
doors, cabinets, drawers, and refrigerators in open-ended unstructured
environments. The robot utilizes an adaptive learning framework to initially
learns from a small set of data through behavior cloning, followed by learning
from online practice on novel objects that fall outside the training
distribution. We also develop a low-cost mobile manipulation hardware platform
capable of safe and autonomous online adaptation in unstructured environments
with a cost of around 20,000 USD. In our experiments we utilize 20 articulate
objects across 4 buildings in the CMU campus. With less than an hour of online
learning for each object, the system is able to increase success rate from 50%
of BC pre-training to 95% using online adaptation. Video results at
https://open-world-mobilemanip.github.io/
Related papers
- Helpful DoggyBot: Open-World Object Fetching using Legged Robots and Vision-Language Models [63.89598561397856]
We present a system for quadrupedal mobile manipulation in indoor environments.
It uses a front-mounted gripper for object manipulation, a low-level controller trained in simulation using egocentric depth for agile skills.
We evaluate our system in two unseen environments without any real-world data collection or training.
arXiv Detail & Related papers (2024-09-30T20:58:38Z) - One Policy to Run Them All: an End-to-end Learning Approach to Multi-Embodiment Locomotion [18.556470359899855]
We introduce URMA, the Unified Robot Morphology Architecture.
Our framework brings the end-to-end Multi-Task Reinforcement Learning approach to the realm of legged robots.
We show that URMA can learn a locomotion policy on multiple embodiments that can be easily transferred to unseen robot platforms.
arXiv Detail & Related papers (2024-09-10T09:44:15Z) - Robot Utility Models: General Policies for Zero-Shot Deployment in New Environments [26.66666135624716]
We present Robot Utility Models (RUMs), a framework for training and deploying zero-shot robot policies.
RUMs can generalize to new environments without any finetuning.
We train five utility models for opening cabinet doors, opening drawers, picking up napkins, picking up paper bags, and reorienting fallen objects.
arXiv Detail & Related papers (2024-09-09T17:59:50Z) - Harmonic Mobile Manipulation [35.82197562695662]
HarmonicMM is an end-to-end learning method that optimize both navigation and manipulation.
Our contributions include a new benchmark for mobile manipulation and the successful deployment with only RGB visual observation.
arXiv Detail & Related papers (2023-12-11T18:54:42Z) - HomeRobot: Open-Vocabulary Mobile Manipulation [107.05702777141178]
Open-Vocabulary Mobile Manipulation (OVMM) is the problem of picking any object in any unseen environment, and placing it in a commanded location.
HomeRobot has two components: a simulation component, which uses a large and diverse curated object set in new, high-quality multi-room home environments; and a real-world component, providing a software stack for the low-cost Hello Robot Stretch.
arXiv Detail & Related papers (2023-06-20T14:30:32Z) - A Walk in the Park: Learning to Walk in 20 Minutes With Model-Free
Reinforcement Learning [86.06110576808824]
Deep reinforcement learning is a promising approach to learning policies in uncontrolled environments.
Recent advancements in machine learning algorithms and libraries combined with a carefully tuned robot controller lead to learning quadruped in only 20 minutes in the real world.
arXiv Detail & Related papers (2022-08-16T17:37:36Z) - ReLMM: Practical RL for Learning Mobile Manipulation Skills Using Only
Onboard Sensors [64.2809875343854]
We study how robots can autonomously learn skills that require a combination of navigation and grasping.
Our system, ReLMM, can learn continuously on a real-world platform without any environment instrumentation.
After a grasp curriculum training phase, ReLMM can learn navigation and grasping together fully automatically, in around 40 hours of real-world training.
arXiv Detail & Related papers (2021-07-28T17:59:41Z) - Visual Navigation in Real-World Indoor Environments Using End-to-End
Deep Reinforcement Learning [2.7071541526963805]
We propose a novel approach that enables a direct deployment of the trained policy on real robots.
The policy is fine-tuned on images collected from real-world environments.
In 30 navigation experiments, the robot reached a 0.3-meter neighborhood of the goal in more than 86.7% of cases.
arXiv Detail & Related papers (2020-10-21T11:22:30Z) - Never Stop Learning: The Effectiveness of Fine-Tuning in Robotic
Reinforcement Learning [109.77163932886413]
We show how to adapt vision-based robotic manipulation policies to new variations by fine-tuning via off-policy reinforcement learning.
This adaptation uses less than 0.2% of the data necessary to learn the task from scratch.
We find that our approach of adapting pre-trained policies leads to substantial performance gains over the course of fine-tuning.
arXiv Detail & Related papers (2020-04-21T17:57:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.