Object Detectors in the Open Environment: Challenges, Solutions, and Outlook
- URL: http://arxiv.org/abs/2403.16271v4
- Date: Tue, 9 Apr 2024 05:09:56 GMT
- Title: Object Detectors in the Open Environment: Challenges, Solutions, and Outlook
- Authors: Siyuan Liang, Wei Wang, Ruoyu Chen, Aishan Liu, Boxi Wu, Ee-Chien Chang, Xiaochun Cao, Dacheng Tao,
- Abstract summary: The dynamic and intricate nature of the open environment poses novel and formidable challenges to object detectors.
This paper aims to conduct a comprehensive review and analysis of object detectors in open environments.
We propose a framework that includes four quadrants (i.e., out-of-domain, out-of-category, robust learning, and incremental learning) based on the dimensions of the data / target changes.
- Score: 95.3317059617271
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the emergence of foundation models, deep learning-based object detectors have shown practical usability in closed set scenarios. However, for real-world tasks, object detectors often operate in open environments, where crucial factors (e.g., data distribution, objective) that influence model learning are often changing. The dynamic and intricate nature of the open environment poses novel and formidable challenges to object detectors. Unfortunately, current research on object detectors in open environments lacks a comprehensive analysis of their distinctive characteristics, challenges, and corresponding solutions, which hinders their secure deployment in critical real-world scenarios. This paper aims to bridge this gap by conducting a comprehensive review and analysis of object detectors in open environments. We initially identified limitations of key structural components within the existing detection pipeline and propose the open environment object detector challenge framework that includes four quadrants (i.e., out-of-domain, out-of-category, robust learning, and incremental learning) based on the dimensions of the data / target changes. For each quadrant of challenges in the proposed framework, we present a detailed description and systematic analysis of the overarching goals and core difficulties, systematically review the corresponding solutions, and benchmark their performance over multiple widely adopted datasets. In addition, we engage in a discussion of open problems and potential avenues for future research. This paper aims to provide a fresh, comprehensive, and systematic understanding of the challenges and solutions associated with open-environment object detectors, thus catalyzing the development of more solid applications in real-world scenarios. A project related to this survey can be found at https://github.com/LiangSiyuan21/OEOD_Survey.
Related papers
- Perceptual Piercing: Human Visual Cue-based Object Detection in Low Visibility Conditions [2.0409124291940826]
This study proposes a novel deep learning framework inspired by atmospheric scattering and human visual cortex mechanisms to enhance object detection under poor visibility scenarios such as fog, smoke, and haze.
The objective is to enhance the precision and reliability of detection systems under adverse environmental conditions.
arXiv Detail & Related papers (2024-10-02T04:03:07Z) - Deep Learning-Based Object Pose Estimation: A Comprehensive Survey [73.74933379151419]
We discuss the recent advances in deep learning-based object pose estimation.
Our survey also covers multiple input data modalities, degrees-of-freedom of output poses, object properties, and downstream tasks.
arXiv Detail & Related papers (2024-05-13T14:44:22Z) - Few-Shot Object Detection: Research Advances and Challenges [15.916463121997843]
Few-shot object detection (FSOD) combines few-shot learning and object detection techniques to rapidly adapt to novel objects with limited annotated samples.
This paper presents a comprehensive survey to review the significant advancements in the field of FSOD in recent years.
arXiv Detail & Related papers (2024-04-07T03:37:29Z) - HAZARD Challenge: Embodied Decision Making in Dynamically Changing
Environments [93.94020724735199]
HAZARD consists of three unexpected disaster scenarios, including fire, flood, and wind.
This benchmark enables us to evaluate autonomous agents' decision-making capabilities across various pipelines.
arXiv Detail & Related papers (2024-01-23T18:59:43Z) - A Comprehensive Study on Object Detection Techniques in Unconstrained
Environments [0.0]
Object detection is a crucial task in computer vision that aims to identify and localize objects in images or videos.
The recent advancements in deep learning and Convolutional Neural Networks (CNNs) have significantly improved the performance of object detection techniques.
This paper presents a comprehensive study of object detection techniques in unconstrained environments, including various challenges, datasets, and state-of-the-art approaches.
arXiv Detail & Related papers (2023-04-11T15:45:03Z) - Oriented Object Detection in Optical Remote Sensing Images using Deep Learning: A Survey [10.665235711722076]
Oriented object detection is one of the most fundamental and challenging tasks in remote sensing.
Recent years have witnessed remarkable progress in oriented object detection using deep learning techniques.
arXiv Detail & Related papers (2023-02-21T06:31:53Z) - Learning Open-World Object Proposals without Learning to Classify [110.30191531975804]
We propose a classification-free Object Localization Network (OLN) which estimates the objectness of each region purely by how well the location and shape of a region overlaps with any ground-truth object.
This simple strategy learns generalizable objectness and outperforms existing proposals on cross-category generalization.
arXiv Detail & Related papers (2021-08-15T14:36:02Z) - Automatic Gaze Analysis: A Survey of DeepLearning based Approaches [61.32686939754183]
Eye gaze analysis is an important research problem in the field of computer vision and Human-Computer Interaction.
There are several open questions including what are the important cues to interpret gaze direction in an unconstrained environment.
We review the progress across a range of gaze analysis tasks and applications to shed light on these fundamental questions.
arXiv Detail & Related papers (2021-08-12T00:30:39Z) - Robust Object Detection via Instance-Level Temporal Cycle Confusion [89.1027433760578]
We study the effectiveness of auxiliary self-supervised tasks to improve the out-of-distribution generalization of object detectors.
Inspired by the principle of maximum entropy, we introduce a novel self-supervised task, instance-level temporal cycle confusion (CycConf)
For each object, the task is to find the most different object proposals in the adjacent frame in a video and then cycle back to itself for self-supervision.
arXiv Detail & Related papers (2021-04-16T21:35:08Z) - Understanding Object Detection Through An Adversarial Lens [14.976840260248913]
This paper presents a framework for analyzing and evaluating vulnerabilities of deep object detectors under an adversarial lens.
We demonstrate that the proposed framework can serve as a methodical benchmark for analyzing adversarial behaviors and risks in real-time object detection systems.
We conjecture that this framework can also serve as a tool to assess the security risks and the adversarial robustness of deep object detectors to be deployed in real-world applications.
arXiv Detail & Related papers (2020-07-11T18:41:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.