論文の概要: SINR-Aware Deep Reinforcement Learning for Distributed Dynamic Channel
Allocation in Cognitive Interference Networks
- arxiv url: http://arxiv.org/abs/2402.17773v1
- Date: Sat, 17 Feb 2024 20:03:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-03 19:09:06.757609
- Title: SINR-Aware Deep Reinforcement Learning for Distributed Dynamic Channel
Allocation in Cognitive Interference Networks
- Title(参考訳): 認知干渉ネットワークにおける分散動的チャネル配置のためのSINR対応深層強化学習
- Authors: Yaniv Cohen, Tomer Gafni, Ronen Greenberg, Kobi Cohen
- Abstract要約: 本稿では,複数の大規模ネットワークによるキャリヤ間干渉(ICI)とチャネル再利用を経験する実世界のシステムに焦点を当てる。
CARLTON(Channel Allocation RL To Overlapped Networks)と呼ばれる分散DCAのための新しいマルチエージェント強化学習フレームワークを提案する。
本結果は,従来の最先端手法に比べて優れた効率性を示し,優れた性能とロバストな一般化を示した。
- 参考スコア(独自算出の注目度): 10.514231683620517
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of dynamic channel allocation (DCA) in cognitive
communication networks with the goal of maximizing a global
signal-to-interference-plus-noise ratio (SINR) measure under a specified target
quality of service (QoS)-SINR for each network. The shared bandwidth is
partitioned into K channels with frequency separation. In contrast to the
majority of existing studies that assume perfect orthogonality or a one- to-one
user-channel allocation mapping, this paper focuses on real-world systems
experiencing inter-carrier interference (ICI) and channel reuse by multiple
large-scale networks. This realistic scenario significantly increases the
problem dimension, rendering existing algorithms inefficient. We propose a
novel multi-agent reinforcement learning (RL) framework for distributed DCA,
named Channel Allocation RL To Overlapped Networks (CARLTON). The CARLTON
framework is based on the Centralized Training with Decentralized Execution
(CTDE) paradigm, utilizing the DeepMellow value-based RL algorithm. To ensure
robust performance in the interference-laden environment we address, CARLTON
employs a low-dimensional representation of observations, generating a QoS-type
measure while maximizing a global SINR measure and ensuring the target QoS-SINR
for each network. Our results demonstrate exceptional performance and robust
generalization, showcasing superior efficiency compared to alternative
state-of-the-art methods, while achieving a marginally diminished performance
relative to a fully centralized approach.
- Abstract(参考訳): 本稿では,認知通信ネットワークにおける動的チャネル割当(DCA)の問題点について考察し,各ネットワークの目標品質(QoS)-SINR(QoS)-SINR(QoS)-SINR)を最大化することを目的とする。
共有帯域幅は周波数分離によりkチャネルに分割される。
完全直交性や1対1のユーザチャネル割り当てマッピングを前提とする既存の研究のほとんどとは対照的に,本論文では,複数の大規模ネットワークによる実世界システム間干渉(ici)とチャネル再利用に注目する。
この現実的なシナリオは問題次元を大きく増加させ、既存のアルゴリズムを非効率にする。
本稿では,CARLTON(Channel Allocation RL To Overlapped Networks)という,分散DCAのための新しいマルチエージェント強化学習フレームワークを提案する。
CARLTONフレームワークは、DeepMellow値ベースのRLアルゴリズムを利用して、CTDE(Centralized Training with Decentralized Execution)パラダイムに基づいている。
干渉遅延環境におけるロバストな性能を確保するため、CARLTONは低次元の観測表現を用い、グローバルSINRを最大化し、各ネットワークに対するターゲットQoS-SINRを確保しながらQoS型測定値を生成する。
提案手法は従来の手法に比べて優れた性能を示しつつ,完全集中型アプローチに比べてわずかに性能を低下させる。
関連論文リスト
- Scalable spectral representations for network multiagent control [53.631272539560435]
マルチエージェント制御の一般的なモデルであるNetwork Markov Decision Processes (MDPs)は、効率的な学習に重大な課題をもたらす。
まず、ネットワークMDPに対してスケーラブルなスペクトル局所表現を導出し、各エージェントの局所$Q$関数に対するネットワーク線形部分空間を誘導する。
我々は,連続的な状態対応ネットワークMDPのためのスケーラブルなアルゴリズムフレームワークを設計し,アルゴリズムの収束をエンドツーエンドで保証する。
論文 参考訳(メタデータ) (2024-10-22T17:45:45Z) - Unsupervised Graph-based Learning Method for Sub-band Allocation in 6G Subnetworks [2.0583251142940377]
グラフベース学習を用いた無線ネットワークにおける周波数サブバンド割り当てのための教師なし手法を提案する。
サブネットワーク配置を競合グラフとしてモデル化し,グラフカラー化とPottsモデルにインスパイアされた教師なし学習アプローチを提案し,サブバンド割り当てを最適化する。
論文 参考訳(メタデータ) (2023-12-13T12:57:55Z) - Multi Agent DeepRL based Joint Power and Subchannel Allocation in IAB
networks [0.0]
統合アクセスとバックハウリング(IRL)は、将来の世代におけるより高いデータレートに対する前例のない要求を満たすための、実行可能なアプローチである。
本稿では,分数ノードに付随する巨大なアクション空間の問題を,Deep Q-Learning Networkを用いて処理する方法を示す。
論文 参考訳(メタデータ) (2023-08-31T21:30:25Z) - Inter-Cell Network Slicing With Transfer Learning Empowered Multi-Agent
Deep Reinforcement Learning [6.523367518762879]
ネットワークスライシングにより、オペレータは共通の物理インフラ上で多様なアプリケーションを効率的にサポートできる。
ネットワーク展開の恒常的に増大する密度化は、複雑で非自明な細胞間干渉を引き起こす。
複数の深層強化学習(DRL)エージェントを用いたDIRPアルゴリズムを開発し,各セルの資源分配を協調的に最適化する。
論文 参考訳(メタデータ) (2023-06-20T14:14:59Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
本稿では,CSI行列内の固有周波数領域相関を明らかにするエンコーダデコーダに基づくネットワークを提案する。
エンコーダ・デコーダネットワーク全体がチャネル圧縮に使用される。
提案手法は,共同作業における現状のチャネル推定およびフィードバック技術より優れる。
論文 参考訳(メタデータ) (2023-06-08T06:15:17Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
そこで本研究では,汎用的な渋滞制御(CC)アルゴリズムを設計するための新しい強化学習(RL)手法を提案する。
我々の解であるMARLINは、Soft Actor-Criticアルゴリズムを用いてエントロピーとリターンの両方を最大化する。
我々は,MARLINを実ネットワーク上で訓練し,実ミスマッチを克服した。
論文 参考訳(メタデータ) (2023-02-02T18:27:20Z) - Decentralized Federated Reinforcement Learning for User-Centric Dynamic
TFDD Control [37.54493447920386]
非対称かつ不均一なトラフィック要求を満たすための学習に基づく動的時間周波数分割二重化(D-TFDD)方式を提案する。
分散化された部分観測可能なマルコフ決定過程(Dec-POMDP)として問題を定式化する。
本稿では,グローバルリソースを分散的に最適化するために,Wolpertinger Deep Deterministic Policy gradient (FWDDPG)アルゴリズムという,連合強化学習(RL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-11-04T07:39:21Z) - CATRO: Channel Pruning via Class-Aware Trace Ratio Optimization [61.71504948770445]
本稿では,CATRO (Class-Aware Trace Ratio Optimization) を用いた新しいチャネルプルーニング手法を提案する。
CATROは、他の最先端チャネルプルーニングアルゴリズムと同等の精度で、同様のコストまたは低コストで高い精度を達成できることを示す。
CATROは、クラス認識の特性のため、様々な分類サブタスクに適応的に効率の良いネットワークを創り出すのに適している。
論文 参考訳(メタデータ) (2021-10-21T06:26:31Z) - Cooperative Multi-Agent Reinforcement Learning Based Distributed Dynamic
Spectrum Access in Cognitive Radio Networks [46.723006378363785]
ダイナミックスペクトルアクセス(DSA)は、非効率的なスペクトル利用の問題を改善するための、有望なパラダイムである。
本稿では,一般的な認知無線ネットワークにおけるマルチユーザに対する分散DSA問題について検討する。
我々は、各認知ユーザに対する状態の部分的観測可能性に対処するために、DRQN(Deep Recurrent Q-network)を用いている。
論文 参考訳(メタデータ) (2021-06-17T06:52:21Z) - Distributed Conditional Generative Adversarial Networks (GANs) for
Data-Driven Millimeter Wave Communications in UAV Networks [116.94802388688653]
無人航空機(UAV)無線ネットワークにおけるミリ波(mmWave)通信のための,データ駆動型空対地(A2G)チャネル推定手法を提案する。
実効的なチャネル推定手法を開発し、各UAVは、各ビームフォーミング方向に沿って条件付き生成対向ネットワーク(CGAN)を介してスタンドアロンチャネルモデルを訓練することができる。
分散CGANアーキテクチャに基づく協調的なフレームワークを開発し、各UAVがmmWaveチャネルの分布を協調的に学習できるようにする。
論文 参考訳(メタデータ) (2021-02-02T20:56:46Z) - Decentralized Learning for Channel Allocation in IoT Networks over
Unlicensed Bandwidth as a Contextual Multi-player Multi-armed Bandit Game [134.88020946767404]
本稿では,プライマリセルネットワークにライセンスされたスペクトルに基づいて,アドホックなモノのインターネットネットワークにおける分散チャネル割り当て問題について検討する。
本研究では,この問題をコンテキスト型マルチプレイヤー・マルチアームバンディットゲームにマッピングし,試行錯誤による純粋に分散化された3段階ポリシー学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-03-30T10:05:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。