SINR-Aware Deep Reinforcement Learning for Distributed Dynamic Channel
Allocation in Cognitive Interference Networks
- URL: http://arxiv.org/abs/2402.17773v1
- Date: Sat, 17 Feb 2024 20:03:02 GMT
- Title: SINR-Aware Deep Reinforcement Learning for Distributed Dynamic Channel
Allocation in Cognitive Interference Networks
- Authors: Yaniv Cohen, Tomer Gafni, Ronen Greenberg, Kobi Cohen
- Abstract summary: This paper focuses on real-world systems experiencing inter-carrier interference (ICI) and channel reuse by multiple large-scale networks.
We propose a novel multi-agent reinforcement learning framework for distributed DCA, named Channel Allocation RL To Overlapped Networks (CARLTON)
Our results demonstrate exceptional performance and robust generalization, showcasing superior efficiency compared to alternative state-of-the-art methods.
- Score: 10.514231683620517
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of dynamic channel allocation (DCA) in cognitive
communication networks with the goal of maximizing a global
signal-to-interference-plus-noise ratio (SINR) measure under a specified target
quality of service (QoS)-SINR for each network. The shared bandwidth is
partitioned into K channels with frequency separation. In contrast to the
majority of existing studies that assume perfect orthogonality or a one- to-one
user-channel allocation mapping, this paper focuses on real-world systems
experiencing inter-carrier interference (ICI) and channel reuse by multiple
large-scale networks. This realistic scenario significantly increases the
problem dimension, rendering existing algorithms inefficient. We propose a
novel multi-agent reinforcement learning (RL) framework for distributed DCA,
named Channel Allocation RL To Overlapped Networks (CARLTON). The CARLTON
framework is based on the Centralized Training with Decentralized Execution
(CTDE) paradigm, utilizing the DeepMellow value-based RL algorithm. To ensure
robust performance in the interference-laden environment we address, CARLTON
employs a low-dimensional representation of observations, generating a QoS-type
measure while maximizing a global SINR measure and ensuring the target QoS-SINR
for each network. Our results demonstrate exceptional performance and robust
generalization, showcasing superior efficiency compared to alternative
state-of-the-art methods, while achieving a marginally diminished performance
relative to a fully centralized approach.
Related papers
- Scalable spectral representations for network multiagent control [53.631272539560435]
A popular model for multi-agent control, Network Markov Decision Processes (MDPs) pose a significant challenge to efficient learning.
We first derive scalable spectral local representations for network MDPs, which induces a network linear subspace for the local $Q$-function of each agent.
We design a scalable algorithmic framework for continuous state-action network MDPs, and provide end-to-end guarantees for the convergence of our algorithm.
arXiv Detail & Related papers (2024-10-22T17:45:45Z) - Unsupervised Graph-based Learning Method for Sub-band Allocation in 6G Subnetworks [2.0583251142940377]
We present an unsupervised approach for frequency sub-band allocation in wireless networks using graph-based learning.
We model the subnetwork deployment as a conflict graph and propose an unsupervised learning approach inspired by the graph colouring and the Potts model to optimize the sub-band allocation.
arXiv Detail & Related papers (2023-12-13T12:57:55Z) - Multi Agent DeepRL based Joint Power and Subchannel Allocation in IAB
networks [0.0]
Integrated Access and Backhauling (IRL) is a viable approach for meeting the unprecedented need for higher data rates of future generations.
In this paper, we show how we can use Deep Q-Learning Network to handle problems with huge action spaces associated with fractional nodes.
arXiv Detail & Related papers (2023-08-31T21:30:25Z) - Inter-Cell Network Slicing With Transfer Learning Empowered Multi-Agent
Deep Reinforcement Learning [6.523367518762879]
Network slicing enables operators to efficiently support diverse applications on a common physical infrastructure.
The ever-increasing densification of network deployment leads to complex and non-trivial inter-cell interference.
We develop a DIRP algorithm with multiple deep reinforcement learning (DRL) agents to cooperatively optimize resource partition in individual cells.
arXiv Detail & Related papers (2023-06-20T14:14:59Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - Decentralized Federated Reinforcement Learning for User-Centric Dynamic
TFDD Control [37.54493447920386]
We propose a learning-based dynamic time-frequency division duplexing (D-TFDD) scheme to meet asymmetric and heterogeneous traffic demands.
We formulate the problem as a decentralized partially observable Markov decision process (Dec-POMDP)
In order to jointly optimize the global resources in a decentralized manner, we propose a federated reinforcement learning (RL) algorithm named Wolpertinger deep deterministic policy gradient (FWDDPG) algorithm.
arXiv Detail & Related papers (2022-11-04T07:39:21Z) - CATRO: Channel Pruning via Class-Aware Trace Ratio Optimization [61.71504948770445]
We propose a novel channel pruning method via Class-Aware Trace Ratio Optimization (CATRO) to reduce the computational burden and accelerate the model inference.
We show that CATRO achieves higher accuracy with similar cost or lower cost with similar accuracy than other state-of-the-art channel pruning algorithms.
Because of its class-aware property, CATRO is suitable to prune efficient networks adaptively for various classification subtasks, enhancing handy deployment and usage of deep networks in real-world applications.
arXiv Detail & Related papers (2021-10-21T06:26:31Z) - Cooperative Multi-Agent Reinforcement Learning Based Distributed Dynamic
Spectrum Access in Cognitive Radio Networks [46.723006378363785]
Dynamic spectrum access (DSA) is a promising paradigm to remedy the problem of inefficient spectrum utilization.
In this paper, we investigate the distributed DSA problem for multi-user in a typical cognitive radio network.
We employ the deep recurrent Q-network (DRQN) to address the partial observability of the state for each cognitive user.
arXiv Detail & Related papers (2021-06-17T06:52:21Z) - Distributed Conditional Generative Adversarial Networks (GANs) for
Data-Driven Millimeter Wave Communications in UAV Networks [116.94802388688653]
A novel framework is proposed to perform data-driven air-to-ground (A2G) channel estimation for millimeter wave (mmWave) communications in an unmanned aerial vehicle (UAV) wireless network.
An effective channel estimation approach is developed, allowing each UAV to train a stand-alone channel model via a conditional generative adversarial network (CGAN) along each beamforming direction.
A cooperative framework, based on a distributed CGAN architecture, is developed, allowing each UAV to collaboratively learn the mmWave channel distribution.
arXiv Detail & Related papers (2021-02-02T20:56:46Z) - Decentralized Learning for Channel Allocation in IoT Networks over
Unlicensed Bandwidth as a Contextual Multi-player Multi-armed Bandit Game [134.88020946767404]
We study a decentralized channel allocation problem in an ad-hoc Internet of Things network underlaying on the spectrum licensed to a primary cellular network.
Our study maps this problem into a contextual multi-player, multi-armed bandit game, and proposes a purely decentralized, three-stage policy learning algorithm through trial-and-error.
arXiv Detail & Related papers (2020-03-30T10:05:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.