Graph Neural Networks for Resource Allocation in Multi-Channel Wireless Networks
- URL: http://arxiv.org/abs/2506.03813v1
- Date: Wed, 04 Jun 2025 10:34:05 GMT
- Title: Graph Neural Networks for Resource Allocation in Multi-Channel Wireless Networks
- Authors: Lili Chen, Changyang She, Jingge Zhu, Jamie Evans,
- Abstract summary: We propose an enhanced WMMSE algorithm to solve the JCPA problem in multi-channel wireless networks.<n>We then introduce JCPGNN-M, a graph neural network-based solution that enables simultaneous multi-channel allocation for each user.<n>We show that JCPGNN-M achieves better data rate compared to eWMMSE.
- Score: 15.680699077140453
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the number of mobile devices continues to grow, interference has become a major bottleneck in improving data rates in wireless networks. Efficient joint channel and power allocation (JCPA) is crucial for managing interference. In this paper, we first propose an enhanced WMMSE (eWMMSE) algorithm to solve the JCPA problem in multi-channel wireless networks. To reduce the computational complexity of iterative optimization, we further introduce JCPGNN-M, a graph neural network-based solution that enables simultaneous multi-channel allocation for each user. We reformulate the problem as a Lagrangian function, which allows us to enforce the total power constraints systematically. Our solution involves combining this Lagrangian framework with GNNs and iteratively updating the Lagrange multipliers and resource allocation scheme. Unlike existing GNN-based methods that limit each user to a single channel, JCPGNN-M supports efficient spectrum reuse and scales well in dense network scenarios. Simulation results show that JCPGNN-M achieves better data rate compared to eWMMSE. Meanwhile, the inference time of JCPGNN-M is much lower than eWMMS, and it can generalize well to larger networks.
Related papers
- GNN-Based Joint Channel and Power Allocation in Heterogeneous Wireless Networks [9.031738020845586]
This article proposes a GNN-based algorithm to address the joint resource allocation problem in heterogeneous wireless networks.
Our proposed algorithm achieves satisfactory performance but with higher computational efficiency compared to traditional optimisation algorithms.
arXiv Detail & Related papers (2024-07-28T04:51:00Z) - SINR-Aware Deep Reinforcement Learning for Distributed Dynamic Channel
Allocation in Cognitive Interference Networks [10.514231683620517]
This paper focuses on real-world systems experiencing inter-carrier interference (ICI) and channel reuse by multiple large-scale networks.
We propose a novel multi-agent reinforcement learning framework for distributed DCA, named Channel Allocation RL To Overlapped Networks (CARLTON)
Our results demonstrate exceptional performance and robust generalization, showcasing superior efficiency compared to alternative state-of-the-art methods.
arXiv Detail & Related papers (2024-02-17T20:03:02Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
We study optimization guarantees, i.e., achieving near-zero training loss with the increase in the number of learning epochs.
We show that the threshold on the number of training samples increases with the increase in the network width.
arXiv Detail & Related papers (2023-09-12T13:03:47Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Graph Neural Networks-Based User Pairing in Wireless Communication
Systems [0.34410212782758043]
We propose an unsupervised graph neural network (GNN) approach to efficiently solve the user pairing problem.
At 20 dB SNR, our proposed approach achieves a 49% better sum rate than k-means and a staggering 95% better sum rate than SUS.
arXiv Detail & Related papers (2023-05-14T11:57:42Z) - Flex-Net: A Graph Neural Network Approach to Resource Management in
Flexible Duplex Networks [11.89735327420275]
This work investigates the sum-rate of flexible networks without static time scheduling.
Motivated by the recent success of Graph Networks Networks (GNNs) in solving NP-hard wireless resource management problems, we propose a novel GNN architecture, named Flex-Net.
arXiv Detail & Related papers (2023-01-20T12:49:21Z) - Learning Autonomy in Management of Wireless Random Networks [102.02142856863563]
This paper presents a machine learning strategy that tackles a distributed optimization task in a wireless network with an arbitrary number of randomly interconnected nodes.
We develop a flexible deep neural network formalism termed distributed message-passing neural network (DMPNN) with forward and backward computations independent of the network topology.
arXiv Detail & Related papers (2021-06-15T09:03:28Z) - Efficient power allocation using graph neural networks and deep
algorithm unfolding [40.78748956518785]
We study the problem of optimal power allocation in a single-hop ad hoc wireless network.
We propose a hybrid neural architecture inspired by the unfolding of the algorithmic weighted minimum mean squared error (WMMSE)
We show that UWMMSE achieves robustness comparable to that of WMMSE while significantly reducing the computational complexity.
arXiv Detail & Related papers (2020-11-18T05:28:24Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z) - Wireless Power Control via Counterfactual Optimization of Graph Neural
Networks [124.89036526192268]
We consider the problem of downlink power control in wireless networks, consisting of multiple transmitter-receiver pairs communicating over a single shared wireless medium.
To mitigate the interference among concurrent transmissions, we leverage the network topology to create a graph neural network architecture.
We then use an unsupervised primal-dual counterfactual optimization approach to learn optimal power allocation decisions.
arXiv Detail & Related papers (2020-02-17T07:54:39Z) - Channel Assignment in Uplink Wireless Communication using Machine
Learning Approach [54.012791474906514]
This letter investigates a channel assignment problem in uplink wireless communication systems.
Our goal is to maximize the sum rate of all users subject to integer channel assignment constraints.
Due to high computational complexity, machine learning approaches are employed to obtain computational efficient solutions.
arXiv Detail & Related papers (2020-01-12T15:54:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.