Zeroth-Order Sampling Methods for Non-Log-Concave Distributions: Alleviating Metastability by Denoising Diffusion
- URL: http://arxiv.org/abs/2402.17886v4
- Date: Wed, 30 Oct 2024 01:05:20 GMT
- Title: Zeroth-Order Sampling Methods for Non-Log-Concave Distributions: Alleviating Metastability by Denoising Diffusion
- Authors: Ye He, Kevin Rojas, Molei Tao,
- Abstract summary: This paper considers the problem of sampling from non-logconcave distribution, based on queries of its unnormalized density.
It first describes a framework, Denoising Diffusion Monte Carlo (DDMC), based on the simulation of a denoising diffusion process with its score approximated by a Monte Carlo estimator.
We provide an implementation this oracle, based on rejection sampling, and this turns DDMC into a true algorithm, Zeroth-Order Diffusion Monte Carlo (ZOD-MC)
- Score: 13.832359344815043
- License:
- Abstract: This paper considers the problem of sampling from non-logconcave distribution, based on queries of its unnormalized density. It first describes a framework, Denoising Diffusion Monte Carlo (DDMC), based on the simulation of a denoising diffusion process with its score function approximated by a generic Monte Carlo estimator. DDMC is an oracle-based meta-algorithm, where its oracle is the assumed access to samples that generate a Monte Carlo score estimator. Then we provide an implementation of this oracle, based on rejection sampling, and this turns DDMC into a true algorithm, termed Zeroth-Order Diffusion Monte Carlo (ZOD-MC). We provide convergence analyses by first constructing a general framework, i.e. a performance guarantee for DDMC, without assuming the target distribution to be log-concave or satisfying any isoperimetric inequality. Then we prove that ZOD-MC admits an inverse polynomial dependence on the desired sampling accuracy, albeit still suffering from the curse of dimensionality. Consequently, for low dimensional distributions, ZOD-MC is a very efficient sampler, with performance exceeding latest samplers, including also-denoising-diffusion-based RDMC and RSDMC. Last, we experimentally demonstrate the insensitivity of ZOD-MC to increasingly higher barriers between modes or discontinuity in non-convex potential.
Related papers
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional general score-mismatched diffusion samplers.
We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.
This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - Think Twice Before You Act: Improving Inverse Problem Solving With MCMC [40.5682961122897]
We propose textbfDiffusion textbfPosterior textbfMCMC (textbfDPMC) to solve inverse problems with pretrained diffusion models.
Our algorithm outperforms DPS with less number of evaluations across nearly all tasks, and is competitive among existing approaches.
arXiv Detail & Related papers (2024-09-13T06:10:54Z) - Diffusion Generative Modelling for Divide-and-Conquer MCMC [0.0]
Divide-and-conquer MCMC is a strategy for parallelising Markov Chain Monte Carlo sampling.
We propose using diffusion generative modelling to fit density approximations to the subposterior distributions.
arXiv Detail & Related papers (2024-06-17T15:48:46Z) - Iterated Denoising Energy Matching for Sampling from Boltzmann Densities [109.23137009609519]
Iterated Denoising Energy Matching (iDEM)
iDEM alternates between (I) sampling regions of high model density from a diffusion-based sampler and (II) using these samples in our matching objective.
We show that the proposed approach achieves state-of-the-art performance on all metrics and trains $2-5times$ faster.
arXiv Detail & Related papers (2024-02-09T01:11:23Z) - Faster Sampling without Isoperimetry via Diffusion-based Monte Carlo [30.4930148381328]
Diffusion-based Monte Carlo (DMC) is a method to sample from a general target distribution beyond the isoperimetric condition.
DMC encountered high gradient complexity, resulting in an exponential dependency on the error tolerance $epsilon$ of the obtained samples.
We propose RS-DMC, based on a novel recursion-based score estimation method.
Our algorithm is provably much faster than the popular Langevin-based algorithms.
arXiv Detail & Related papers (2024-01-12T02:33:57Z) - Langevin Quasi-Monte Carlo [6.146093081175471]
Langevin Monte Carlo (LMC) and its gradient versions are powerful algorithms for sampling from complex high-dimensional distributions.
We show that the estimation error of LMC can also be reduced by using quasi-random samples.
arXiv Detail & Related papers (2023-09-22T07:15:18Z) - Reverse Diffusion Monte Carlo [19.35592726471155]
We propose a novel Monte Carlo sampling algorithm called reverse diffusion Monte Carlo (rdMC)
rdMC is distinct from the Markov chain Monte Carlo (MCMC) methods.
arXiv Detail & Related papers (2023-07-05T05:42:03Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Sampling (AIS) synthesizes weighted samples from an intractable distribution.
We propose the Constant Rate AIS algorithm and its efficient implementation for $alpha$-divergences.
arXiv Detail & Related papers (2023-06-27T08:15:28Z) - Semi-Implicit Denoising Diffusion Models (SIDDMs) [50.30163684539586]
Existing models such as Denoising Diffusion Probabilistic Models (DDPM) deliver high-quality, diverse samples but are slowed by an inherently high number of iterative steps.
We introduce a novel approach that tackles the problem by matching implicit and explicit factors.
We demonstrate that our proposed method obtains comparable generative performance to diffusion-based models and vastly superior results to models with a small number of sampling steps.
arXiv Detail & Related papers (2023-06-21T18:49:22Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
Hybrid Monte Carlo is a powerful Markov Chain Monte Carlo method for sampling from complex continuous distributions.
We introduce a new approach based on augmenting Monte Carlo methods with SurVAE Flows to sample from discrete distributions.
We demonstrate the efficacy of our algorithm on a range of examples from statistics, computational physics and machine learning, and observe improvements compared to alternative algorithms.
arXiv Detail & Related papers (2021-02-04T02:21:08Z) - Generative Modeling with Denoising Auto-Encoders and Langevin Sampling [88.83704353627554]
We show that both DAE and DSM provide estimates of the score of the smoothed population density.
We then apply our results to the homotopy method of arXiv:1907.05600 and provide theoretical justification for its empirical success.
arXiv Detail & Related papers (2020-01-31T23:50:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.