論文の概要: JMLR: Joint Medical LLM and Retrieval Training for Enhancing Reasoning and Professional Question Answering Capability
- arxiv url: http://arxiv.org/abs/2402.17887v4
- Date: Fri, 28 Jun 2024 13:23:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 21:34:45.984690
- Title: JMLR: Joint Medical LLM and Retrieval Training for Enhancing Reasoning and Professional Question Answering Capability
- Title(参考訳): JMLR: 推論と専門的質問応答能力向上のための共同医療LLMと検索訓練
- Authors: Junda Wang, Zhichao Yang, Zonghai Yao, Hong Yu,
- Abstract要約: LLM(Large Language Models)は、医学知識の獲得と質問応答において顕著な可能性を実証している。
LLMは、ドメイン固有の事前訓練であっても、幻覚を起こし、事実的に誤った結果をもたらす可能性がある。
JMLR(LLMと情報検索)を微調整期間中に導入し,幻覚に対処する。
- 参考スコア(独自算出の注目度): 8.476124605775976
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have demonstrated a remarkable potential in medical knowledge acquisition and question-answering. However, LLMs can potentially hallucinate and yield factually incorrect outcomes, even with domain-specific pretraining. Previously, retrieval augmented generation (RAG) has limited success in addressing hallucinations. Unlike previous methods in RAG where the retrieval model was trained separately from the LLM, we introduce JMLR (for Jointly trains LLM and information Retrieval) during the fine-tuning phase. The synchronized training mechanism enhances JMLR's ability to retrieve clinical guidelines and leverage medical knowledge to reason and answer questions and reduces the demand for computational resources. We evaluated JMLR on the important medical question-answering application. Our experimental results demonstrate that JMLR-13B (70.5%) outperforms a previous state-of-the-art open-source model using conventional pre-training and fine-tuning Meditron-70B (68.9%) and Llama2-13B with RAG (67.7%) on a medical question-answering dataset. Comprehensive evaluations reveal JMLR-13B enhances reasoning quality and reduces hallucinations better than Claude3-Opus. Additionally, JMLR-13B (148 GPU hours) also trains much faster than Meditron-70B (42630 GPU hours). Through this work, we provide a new and efficient knowledge enhancement method for healthcare, demonstrating the potential of integrating retrieval and LLM training for medical question-answering systems.
- Abstract(参考訳): LLM(Large Language Models)は、医学知識の獲得と質問応答において顕著な可能性を実証している。
しかし、LLMは、ドメイン固有の事前訓練であっても、幻覚を起こし、事実的に誤った結果をもたらす可能性がある。
これまでは、検索拡張生成(RAG)は幻覚への対処に限られた成功を収めてきた。
検索モデルがLLMと別々に訓練されたRAGの従来の手法とは異なり, 微調整期間中にJMLR(JMLR: Jointly Train LLM and Information Retrieval)を導入する。
シンクロナイズドトレーニング機構は、JMLRが臨床ガイドラインを検索し、医療知識を活用して疑問に答える能力を高め、計算資源の需要を減らす。
我々は,JMLRを重要な医療質問応答アプリケーションとして評価した。
実験の結果,JMLR-13B (70.5%) は従来の事前学習および微調整型メディトロン-70B (68.9%) と,RAG (67.7%) を用いたRAG (67.7%) のLlama2-13Bを用いて,従来の最先端オープンソースモデルよりも優れていた。
総合的な評価では、JMLR-13Bはクロード3-Opusよりも推論品質を高め、幻覚を減少させる。
さらに、JMLR-13B(148GPU時間)もMeditron-70B(42630GPU時間)よりも高速にトレーニングする。
本研究は,医学的質問応答システムにおける検索とLLMトレーニングの統合の可能性を示す,医療のための新しい,効率的な知識向上手法を提供する。
関連論文リスト
- Enhancing Biomedical Knowledge Retrieval-Augmented Generation with Self-Rewarding Tree Search and Proximal Policy Optimization [50.26966969163348]
大規模言語モデル(LLM)は,検索増強世代(RAG)の進展に伴い,生物医学領域において大きな可能性を示した。
既存の検索強化アプローチは、様々なクエリやドキュメント、特に医療知識クエリに対処する上で、課題に直面している。
モンテカルロ木探索(MCTS)と自己回帰パラダイムに基づく自己回帰木探索(SeRTS)を提案する。
論文 参考訳(メタデータ) (2024-06-17T06:48:31Z) - MedExQA: Medical Question Answering Benchmark with Multiple Explanations [2.2246416434538308]
本稿では,MedExQAについて紹介する。MedExQAは,医学的知識に関する大規模言語モデル (LLM) の理解を説明を通じて評価するための,医学的質問応答の新しいベンチマークである。
5つの異なる医療専門分野のデータセットを構築することで、現在の医療QAベンチマークの大きなギャップに対処する。
本研究は、医学LLMにおける説明可能性の重要性を強調し、分類精度以上のモデルを評価する効果的な方法論を提案し、特定の分野である音声言語病理学に光を当てる。
論文 参考訳(メタデータ) (2024-06-10T14:47:04Z) - Large Language Model Distilling Medication Recommendation Model [61.89754499292561]
大規模言語モデル(LLM)の強力な意味理解と入力非依存特性を利用する。
本研究は, LLMを用いて既存の薬剤推奨手法を変換することを目的としている。
これを軽減するため,LLMの習熟度をよりコンパクトなモデルに伝達する機能レベルの知識蒸留技術を開発した。
論文 参考訳(メタデータ) (2024-02-05T08:25:22Z) - MEDITRON-70B: Scaling Medical Pretraining for Large Language Models [91.25119823784705]
大きな言語モデル(LLM)は、医療知識へのアクセスを民主化することができる。
医療領域に適応した7Bおよび70BパラメータのオープンソースLLMスイートであるMEDITRONをリリースする。
論文 参考訳(メタデータ) (2023-11-27T18:49:43Z) - Qilin-Med: Multi-stage Knowledge Injection Advanced Medical Large Language Model [41.11769935795965]
本稿では,ドメイン固有型連続事前学習(DCPT),スーパーバイザードファインチューニング(SFT),直接選好最適化(DPO)を組み合わせた多段階学習手法を提案する。
CPTとSFTの段階では、Qilin-MedはCMExamテストセットでそれぞれ38.4%と40.0%の精度を達成した。
DPOフェーズでは、BLEU-1で16.66点、Huatuo-26MテストセットでROUGE-1で27.44点を記録し、SFTフェーズ(BLEU-1で12.69点、ROUGE-1で24.21点)をさらに改善した。
論文 参考訳(メタデータ) (2023-10-13T13:17:03Z) - MKRAG: Medical Knowledge Retrieval Augmented Generation for Medical Question Answering [42.528771319248214]
大規模言語モデル(LLM)は、医療質問応答(QA)のようなドメイン固有のタスクでよく機能しないことが多い。
外部知識ベースから医学的事実を抽出し,LSMのクエリプロンプトに注入するための総合的検索手法を提案する。
Vicuna-7Bは44.46%から48.54%の精度向上を示した。
論文 参考訳(メタデータ) (2023-09-27T21:26:03Z) - Augmenting Black-box LLMs with Medical Textbooks for Clinical Question
Answering [54.13933019557655]
LLMs Augmented with Medical Textbooks (LLM-AMT)を提案する。
LLM-AMTは、プラグイン・アンド・プレイモジュールを使用して、権威ある医学教科書をLLMのフレームワークに統合する。
検索コーパスとしての医学教科書は,医学領域におけるウィキペディアよりも効果的な知識データベースであることが確認された。
論文 参考訳(メタデータ) (2023-09-05T13:39:38Z) - MedAlign: A Clinician-Generated Dataset for Instruction Following with
Electronic Medical Records [60.35217378132709]
大型言語モデル(LLM)は、人間レベルの流布で自然言語の指示に従うことができる。
医療のための現実的なテキスト生成タスクにおけるLCMの評価は依然として困難である。
我々は、EHRデータのための983の自然言語命令のベンチマークデータセットであるMedAlignを紹介する。
論文 参考訳(メタデータ) (2023-08-27T12:24:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。