論文の概要: Large Language Models(LLMs) on Tabular Data: Prediction, Generation, and
Understanding -- A Survey
- arxiv url: http://arxiv.org/abs/2402.17944v2
- Date: Fri, 1 Mar 2024 00:14:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-04 13:31:20.311180
- Title: Large Language Models(LLMs) on Tabular Data: Prediction, Generation, and
Understanding -- A Survey
- Title(参考訳): 表データを用いた大規模言語モデル(llm) - 予測・生成・理解-
- Authors: Xi Fang, Weijie Xu, Fiona Anting Tan, Jiani Zhang, Ziqing Hu, Yanjun
Qi, Scott Nickleach, Diego Socolinsky, Srinivasan Sengamedu, Christos
Faloutsos
- Abstract要約: 現在、この研究領域における主要なテクニック、メトリクス、データセット、モデル、最適化アプローチを要約し比較する包括的なレビューが欠如しています。
この調査は、これらの領域における最近の進歩を集約し、使用するデータセット、メトリクス、方法論の詳細な調査と分類を提供することによって、このギャップに対処することを目的としている。
既存の文献の強さ、限界、未探索領域、ギャップを識別し、この重要かつ急速に発展する分野における将来の研究の方向性についていくつかの洞察を提供する。
- 参考スコア(独自算出の注目度): 17.765458116029734
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent breakthroughs in large language modeling have facilitated rigorous
exploration of their application in diverse tasks related to tabular data
modeling, such as prediction, tabular data synthesis, question answering, and
table understanding. Each task presents unique challenges and opportunities.
However, there is currently a lack of comprehensive review that summarizes and
compares the key techniques, metrics, datasets, models, and optimization
approaches in this research domain. This survey aims to address this gap by
consolidating recent progress in these areas, offering a thorough survey and
taxonomy of the datasets, metrics, and methodologies utilized. It identifies
strengths, limitations, unexplored territories, and gaps in the existing
literature, while providing some insights for future research directions in
this vital and rapidly evolving field. It also provides relevant code and
datasets references. Through this comprehensive review, we hope to provide
interested readers with pertinent references and insightful perspectives,
empowering them with the necessary tools and knowledge to effectively navigate
and address the prevailing challenges in the field.
- Abstract(参考訳): 大規模言語モデリングにおける近年のブレークスルーは、予測、表データ合成、質問応答、テーブル理解など、表データモデリングに関連する様々なタスクにおいて、彼らのアプリケーションの厳密な探索を促進する。
各タスクは固有の課題と機会を提供する。
しかし、現在、この研究領域における重要な技術、メトリクス、データセット、モデル、最適化アプローチを要約し比較する包括的なレビューが欠けている。
この調査は、これらの領域における最近の進歩を集約し、使用するデータセット、メトリクス、方法論の詳細な調査と分類を提供することによって、このギャップに対処することを目的としている。
既存の文献における強み、限界、未開拓領域、ギャップを識別し、このバイタルで急速に進化する分野における今後の研究方向についての洞察を提供する。
関連するコードやデータセットの参照も提供する。
この総合的なレビューを通じて、興味のある読者に関連する参照と洞察に富んだ視点を提供し、この分野の一般的な課題を効果的にナビゲートし解決するために必要なツールと知識を彼らに与えたいと思っています。
関連論文リスト
- Abstractive Text Summarization: State of the Art, Challenges, and Improvements [6.349503549199403]
このレビューでは、最先端のメソッド、課題、ソリューション、比較、制限、将来の改善をチャートアップする包括的なアプローチを取り上げる。
本論文は,不適切な意味表現,事実整合性,制御可能なテキスト要約,言語間要約,評価指標などの課題を強調する。
論文 参考訳(メタデータ) (2024-09-04T03:39:23Z) - Data-Centric AI in the Age of Large Language Models [51.20451986068925]
本稿では,大規模言語モデル(LLM)に着目した,AI研究におけるデータ中心の視点を提案する。
本研究では,LLMの発達段階(事前学習や微調整など)や推論段階(文脈内学習など)において,データが有効であることを示す。
データを中心とした4つのシナリオを特定し、データ中心のベンチマークとデータキュレーション、データ属性、知識伝達、推論コンテキスト化をカバーします。
論文 参考訳(メタデータ) (2024-06-20T16:34:07Z) - Deep Learning-Based Object Pose Estimation: A Comprehensive Survey [73.74933379151419]
ディープラーニングに基づくオブジェクトポーズ推定の最近の進歩について論じる。
また、複数の入力データモダリティ、出力ポーズの自由度、オブジェクト特性、下流タスクについても調査した。
論文 参考訳(メタデータ) (2024-05-13T14:44:22Z) - From Pixels to Insights: A Survey on Automatic Chart Understanding in the Era of Large Foundation Models [98.41645229835493]
グラフ形式のデータの可視化は、データ分析において重要な役割を担い、重要な洞察を提供し、情報的な意思決定を支援する。
大規模言語モデルのような大規模な基盤モデルは、様々な自然言語処理タスクに革命をもたらした。
本研究は,自然言語処理,コンピュータビジョン,データ解析の分野における研究者や実践者の包括的資源として機能する。
論文 参考訳(メタデータ) (2024-03-18T17:57:09Z) - A Systematic Review of Data-to-Text NLG [2.4769539696439677]
高品質なテキストを生成する手法を探索し、テキスト生成における幻覚の課題に対処する。
テキスト品質の進歩にもかかわらず、このレビューは低リソース言語における研究の重要性を強調している。
論文 参考訳(メタデータ) (2024-02-13T14:51:45Z) - Capture the Flag: Uncovering Data Insights with Large Language Models [90.47038584812925]
本研究では,Large Language Models (LLMs) を用いてデータの洞察の発見を自動化する可能性について検討する。
そこで本稿では,データセット内の意味的かつ関連する情報(フラグ)を識別する能力を測定するために,フラグを捕捉する原理に基づく新しい評価手法を提案する。
論文 参考訳(メタデータ) (2023-12-21T14:20:06Z) - Text2Analysis: A Benchmark of Table Question Answering with Advanced
Data Analysis and Unclear Queries [67.0083902913112]
高度な解析タスクを取り入れたText2Analysisベンチマークを開発した。
また,5つのイノベーティブかつ効果的なアノテーション手法を開発した。
3つの異なる指標を用いて5つの最先端モデルを評価する。
論文 参考訳(メタデータ) (2023-12-21T08:50:41Z) - Trends in Integration of Knowledge and Large Language Models: A Survey and Taxonomy of Methods, Benchmarks, and Applications [41.24492058141363]
大規模言語モデル(LLM)は、様々な自然言語処理において優れた性能を示すが、時代遅れのデータやドメイン固有の制限から生じる問題の影響を受けやすい。
本稿では,手法,ベンチマーク,応用の分類など,知識モデルと大規模言語モデルの統合の動向を論じるレビューを提案する。
論文 参考訳(メタデータ) (2023-11-10T05:24:04Z) - Deep Learning Schema-based Event Extraction: Literature Review and
Current Trends [60.29289298349322]
ディープラーニングに基づくイベント抽出技術が研究ホットスポットとなっている。
本稿では,ディープラーニングモデルに焦点をあて,最先端のアプローチを見直し,そのギャップを埋める。
論文 参考訳(メタデータ) (2021-07-05T16:32:45Z) - Data and its (dis)contents: A survey of dataset development and use in
machine learning research [11.042648980854487]
機械学習におけるデータの収集と利用方法に関する多くの懸念を調査します。
この分野の実践的かつ倫理的な問題のいくつかに対処するには、データのより慎重で徹底した理解が必要であると主張する。
論文 参考訳(メタデータ) (2020-12-09T22:13:13Z) - Beyond Leaderboards: A survey of methods for revealing weaknesses in
Natural Language Inference data and models [6.998536937701312]
近年、表面的な手がかりのために自然言語推論(NLI)データセットを分析する論文が増えている。
この構造化された調査は、モデルとデータセットの報告された弱点を分類することで、進化する研究領域の概要を提供する。
論文 参考訳(メタデータ) (2020-05-29T17:55:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。