論文の概要: CogSteer: Cognition-Inspired Selective Layer Intervention for Efficient Semantic Steering in Large Language Models
- arxiv url: http://arxiv.org/abs/2410.17714v1
- Date: Wed, 23 Oct 2024 09:40:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:57:12.724007
- Title: CogSteer: Cognition-Inspired Selective Layer Intervention for Efficient Semantic Steering in Large Language Models
- Title(参考訳): CogSteer:大規模言語モデルにおける効率的なセマンティックステアリングのための認知誘発選択層干渉
- Authors: Xintong Wang, Jingheng Pan, Longqin Jiang, Liang Ding, Xingshan Li, Chris Biemann,
- Abstract要約: 本研究では,眼球運動計測法を用いて,層間における大規模言語モデル(LLM)の振る舞いを解釈する。
これらの知見に触発され, ステアリング層選択を導入し, 微調整と推論による層間干渉法に適用した。
提案手法は, 計算資源の97%, トレーニング時間の60%を効率よく節約しつつ, 毒性スコアの点で優れた結果が得られる。
- 参考スコア(独自算出の注目度): 22.42235251921268
- License:
- Abstract: Despite their impressive capabilities, large language models (LLMs) often lack interpretability and can generate toxic content. While using LLMs as foundation models and applying semantic steering methods are widely practiced, we believe that efficient methods should be based on a thorough understanding of LLM behavior. To this end, we propose using eye movement measures to interpret LLM behavior across layers. We find that LLMs exhibit patterns similar to human gaze across layers and different layers function differently. Inspired by these findings, we introduce a heuristic steering layer selection and apply it to layer intervention methods via fine-tuning and inference. Using language toxification and detoxification as test beds, we demonstrate that our proposed CogSteer methods achieve better results in terms of toxicity scores while efficiently saving 97% of the computational resources and 60% of the training time. Our model-agnostic approach can be adopted into various LLMs, contributing to their interpretability and promoting trustworthiness for safe deployment.
- Abstract(参考訳): 印象的な機能にもかかわらず、大きな言語モデル(LLM)は解釈性に欠け、有害なコンテンツを生成することがある。
基礎モデルとしてLLMを使用し, セマンティックステアリング手法を適用することは広く行われているが, 効率的な手法はLLMの挙動を徹底的に理解した方がよいと信じている。
そこで本研究では,レイヤ間のLCMの挙動を解釈するための眼球運動計測手法を提案する。
LLMは、層をまたいだ人間の視線に類似したパターンを示し、異なる層が異なる機能を示す。
これらの知見に触発されて,ヒューリスティックなステアリング層選択を導入し,微調整と推論による層間干渉法に適用した。
筆者らは, 言語トックス化と解毒を試験ベッドとして用いて, 有毒度スコアの観点から, 計算資源の97%, トレーニング時間の60%を効率よく節約しつつ, より良い結果が得られることを示した。
モデルに依存しないアプローチは様々なLSMに採用でき、その解釈可能性や安全な配置に対する信頼性の向上に寄与する。
関連論文リスト
- EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - In-Context Learning with Reinforcement Learning for Incomplete Utterance Rewriting [33.89176174108559]
大規模言語モデル(LLM)の文脈内学習は、いくつかの例で拡張された命令に基づいて予測を行う。
ICLの既存の例選択方法はスパースまたは高密度レトリバーを使用し、有効性能を導出する。
本稿では,言語モデルセレクタとLLMジェネレータから構成される実例選択(RLS)のためのポリシーベース強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-23T12:32:12Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
本稿では,MLLM命令のチューニングを理論的・経験的両面から解析する。
そこで本研究では,学習バランスを定量的に評価する尺度を提案する。
さらに,MLLMの生成分布の更新を促進する補助的損失正規化手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T23:18:55Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Detecting Hallucinations in Large Language Model Generation: A Token Probability Approach [0.0]
LLM(Large Language Models)は、幻覚と呼ばれる不正確な出力を生成する。
本稿では,トークンから得られる4つの数値的特徴と,他の評価者から得られる語彙的確率を用いた教師付き学習手法を提案する。
この方法は有望な結果をもたらし、3つの異なるベンチマークで複数のタスクで最先端の結果を上回る。
論文 参考訳(メタデータ) (2024-05-30T03:00:47Z) - The Strong Pull of Prior Knowledge in Large Language Models and Its Impact on Emotion Recognition [74.04775677110179]
In-context Learning (ICL) は、Large Language Models (LLM) を用いた自然言語処理のための強力なパラダイムとして登場した。
LLMには、感情認識において強いが矛盾する先行性があり、その予測に影響を及ぼすことが示される。
以上の結果から,ICLをより大きなLCMで事前学習領域外の情動中心タスクに使用する場合,注意が必要であることが示唆された。
論文 参考訳(メタデータ) (2024-03-25T19:07:32Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
大規模言語モデル(LLM)は、主に様々なテキスト理解および生成タスクにおける全体的なパフォーマンスによって評価される。
FAC$2$E, FAC$2$Eについて述べる。
論文 参考訳(メタデータ) (2024-02-29T21:05:37Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
大規模言語モデル(LLM)から生成されたテキストの真偽を特徴付ける方法と予測法について検討する。
モデルアクティベーションの局所固有次元 (LID) を用いて, 内部アクティベーションを調査し, LLMの真偽を定量化する。
論文 参考訳(メタデータ) (2024-02-28T04:56:21Z) - Mind's Mirror: Distilling Self-Evaluation Capability and Comprehensive Thinking from Large Language Models [20.28989820878285]
大規模言語モデル (LLM) は自然言語処理において顕著な進歩を遂げている。
これらのモデルの大規模かつ計算的な要求は、資源に制約のある環境での実践的展開を考えると、大きな課題となる。
論文 参考訳(メタデータ) (2023-11-15T18:56:23Z) - Scaling Sentence Embeddings with Large Language Models [43.19994568210206]
本研究では,文埋め込み性能の向上を目的としたテキスト内学習手法を提案する。
提案手法では,従来のプロンプトに基づく表現手法を自己回帰モデルに適用する。
モデルサイズをスケールすることで、数千億以上のパラメータへのスケーリングが意味的なテキスト類似性タスクのパフォーマンスを損なうことが分かる。
論文 参考訳(メタデータ) (2023-07-31T13:26:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。