論文の概要: Generative AI for Unmanned Vehicle Swarms: Challenges, Applications and
Opportunities
- arxiv url: http://arxiv.org/abs/2402.18062v1
- Date: Wed, 28 Feb 2024 05:46:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-29 16:16:09.598862
- Title: Generative AI for Unmanned Vehicle Swarms: Challenges, Applications and
Opportunities
- Title(参考訳): 無人車両群のためのジェネレーティブAI:挑戦、応用、機会
- Authors: Guangyuan Liu, Nguyen Van Huynh, Hongyang Du, Dinh Thai Hoang, Dusit
Niyato, Kun Zhu, Jiawen Kang, Zehui Xiong, Abbas Jamalipour, Dong In Kim
- Abstract要約: Generative AI(GAI)は、無人車両群におけるこれらの課題を解決する大きな可能性を提供する。
本稿では,無人車及び無人車群の概要と,その利用事例と既存課題について述べる。
そこで本研究では,無人車両群におけるGAIの適用状況と課題について,さまざまな知見と議論を加えて概説する。
- 参考スコア(独自算出の注目度): 84.00105187866806
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With recent advances in artificial intelligence (AI) and robotics, unmanned
vehicle swarms have received great attention from both academia and industry
due to their potential to provide services that are difficult and dangerous to
perform by humans. However, learning and coordinating movements and actions for
a large number of unmanned vehicles in complex and dynamic environments
introduce significant challenges to conventional AI methods. Generative AI
(GAI), with its capabilities in complex data feature extraction,
transformation, and enhancement, offers great potential in solving these
challenges of unmanned vehicle swarms. For that, this paper aims to provide a
comprehensive survey on applications, challenges, and opportunities of GAI in
unmanned vehicle swarms. Specifically, we first present an overview of unmanned
vehicles and unmanned vehicle swarms as well as their use cases and existing
issues. Then, an in-depth background of various GAI techniques together with
their capabilities in enhancing unmanned vehicle swarms are provided. After
that, we present a comprehensive review on the applications and challenges of
GAI in unmanned vehicle swarms with various insights and discussions. Finally,
we highlight open issues of GAI in unmanned vehicle swarms and discuss
potential research directions.
- Abstract(参考訳): 人工知能(AI)とロボティクスの最近の進歩により、人間による実行が困難で危険なサービスを提供する可能性から、無人の車両群は学術と産業の両方から大きな注目を集めている。
しかし、複雑な環境や動的環境における多数の無人車両の動きと行動の学習と調整は、従来のAI手法に重大な課題をもたらす。
複雑なデータの特徴抽出、変換、拡張機能を備えた生成AI(GAI)は、無人車両群におけるこれらの課題を解決する大きな可能性を秘めている。
そこで本研究では,無人車両群におけるGAIの適用,課題,可能性に関する総合的な調査を行う。
具体的には、まず、無人車両と無人車両群の概要と、その使用事例と既存の問題について概説する。
そして、各種GAI技術の奥深くの背景と、無人車両群を増強する能力が提供される。
その後,無人車両群におけるGAIの適用状況と課題について,さまざまな知見と議論を加えて概説する。
最後に、無人車両群におけるGAIのオープンな課題を強調し、今後の研究方向性について論じる。
関連論文リスト
- GenAI-powered Multi-Agent Paradigm for Smart Urban Mobility: Opportunities and Challenges for Integrating Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) with Intelligent Transportation Systems [10.310791311301962]
本稿では,大規模言語モデル (LLM) と新生検索・拡張生成技術 (RAG) の変換可能性について検討する。
本稿では,スマートモビリティサービスをインテリジェントかつ対話的に提供可能なマルチエージェントシステムの開発を目的とした概念的フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-31T16:14:42Z) - Commonsense Reasoning for Legged Robot Adaptation with Vision-Language Models [81.55156507635286]
脚のついたロボットは、様々な環境をナビゲートし、幅広い障害を克服することができる。
現在の学習手法は、人間の監督を伴わずに、予期せぬ状況の長い尾への一般化に苦慮することが多い。
本稿では,VLM-Predictive Control (VLM-PC) というシステムを提案する。
論文 参考訳(メタデータ) (2024-07-02T21:00:30Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
本稿では,現在のAVの状況を調べることによって,自律運転における本質的なリスクを評価する。
AVの利点と、現実のシナリオにおける潜在的なセキュリティ課題との微妙なバランスを強調した、特定のクレームを開発する。
論文 参考訳(メタデータ) (2024-05-14T09:42:21Z) - A Survey of Generative AI for Intelligent Transportation Systems: Road Transportation Perspective [7.770651543578893]
我々は、異なる生成AI技術の原則を紹介する。
我々は,ITSにおけるタスクを,交通認識,交通予測,交通シミュレーション,交通意思決定の4つのタイプに分類する。
これらの4種類のタスクにおいて、生成的AI技術が重要な問題にどのように対処するかを説明する。
論文 参考訳(メタデータ) (2023-12-13T16:13:23Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
本研究の目的は、ADASおよび自動運転車のカメラおよびレーダーによる認識の現在のシナリオに関する研究を行うことである。
両センサと融合に関する概念と特徴を提示する。
本稿では、ディープラーニングに基づく検出とセグメンテーションタスクの概要と、車両の認識における主要なデータセット、メトリクス、課題、オープンな質問について説明する。
論文 参考訳(メタデータ) (2023-03-08T00:48:32Z) - Survey of Deep Learning for Autonomous Surface Vehicles in the Marine
Environment [15.41166179659646]
今後数年以内に、幅広い用途で利用できる高度な自動運転技術が提供される予定だ。
本稿では,ASV関連分野におけるディープラーニング(DL)手法の実装に関する既存研究について検討する。
論文 参考訳(メタデータ) (2022-10-16T08:46:17Z) - Intelligent Traffic Monitoring with Hybrid AI [78.65479854534858]
マルチモーダルコンテキスト理解のためのニューロシンボリックアーキテクチャであるHANSを紹介する。
HANSが交通監視に関わる課題にどのように対処するかを示すとともに,幅広い推論手法と統合可能であることを示す。
論文 参考訳(メタデータ) (2022-08-31T17:47:22Z) - A Review of Autonomous Road Vehicle Integrated Approaches to an
Emergency Obstacle Avoidance Maneuver [0.0]
本原稿は緊急障害物回避操作(EOAM)に不可欠なシステムに焦点を当てている。
高速道路での走行のニュアンスを考慮しつつ、関連する各システムの最先端を識別する。
論文 参考訳(メタデータ) (2021-05-20T01:11:26Z) - AI in Smart Cities: Challenges and approaches to enable road vehicle
automation and smart traffic control [56.73750387509709]
SCCは、活動やユーティリティの自動化と最適化による効率向上を目指すデータ中心の社会を構想しています。
本稿では、SCCにおけるAIの視点を説明し、道路車両の自動化とスマート交通制御を可能にする交通で使用されるAIベースの技術の概要を示す。
論文 参考訳(メタデータ) (2021-04-07T14:31:08Z) - Challenges of engineering safe and secure highly automated vehicles [0.0]
本稿では,安全,安全,信頼性,信頼性の高い高度自動走行車(hav)を実現する上で,まだ克服すべき課題をまとめる。
havを実現する上での4つの課題は、継続的デプロイ後のシステム改善の実現、不確実性と不完全な情報の処理、機械学習コンポーネントによるhavの検証、予測である。
論文 参考訳(メタデータ) (2021-03-05T08:52:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。