論文の概要: Why Autonomous Vehicles Are Not Ready Yet: A Multi-Disciplinary Review of Problems, Attempted Solutions, and Future Directions
- arxiv url: http://arxiv.org/abs/2311.09093v4
- Date: Wed, 02 Apr 2025 13:11:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 19:59:18.958752
- Title: Why Autonomous Vehicles Are Not Ready Yet: A Multi-Disciplinary Review of Problems, Attempted Solutions, and Future Directions
- Title(参考訳): 自動運転車がまだ準備が整っていない理由
- Authors: Xingshuai Dong, Max Cappuccio, Hamad Al Jassmi, Fady Alnajjar, Essam Debie, Milad Ghasrikhouzani, Alessandro Lanteri, Ali Luqman, Tate McGregor, Oleksandra Molloy, Alice Plebe, Michael Regan, Dongmo Zhang,
- Abstract要約: 本稿では, 自動化分野が直面する大きな課題を考察するために, 統合的・多分野的なアプローチを採用する。
レビューでは、現在の技術と研究者が考案した最も有望な解決策に関連する限界とリスクについて検討する。
- 参考スコア(独自算出の注目度): 43.389650174195914
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Personal autonomous vehicles are cars, trucks and bikes capable of sensing their surrounding environment, planning their route, and driving with little or no involvement of human drivers. Despite the impressive technological achievements made by the industry in recent times and the hopeful announcements made by leading entrepreneurs, to date no personal vehicle is approved for road circulation in a 'fully' or 'semi' autonomous mode (autonomy levels 4 and 5) and it is still unclear when such vehicles will eventually be mature enough to receive this kind of approval. The present review adopts an integrative and multidisciplinary approach to investigate the major challenges faced by the automative sector, with the aim to identify the problems that still trouble and delay the commercialization of autonomous vehicles. The review examines the limitations and risks associated with current technologies and the most promising solutions devised by the researchers. This negative assessment methodology is not motivated by pessimism, but by the aspiration to raise critical awareness about the technology's state-of-the-art, the industry's quality standards, and the society's demands and expectations. While the survey primarily focuses on the applications of artificial intelligence for perception and navigation, it also aims to offer an enlarged picture that links the purely technological aspects with the relevant human-centric aspects, including, cultural attitudes, conceptual assumptions, and normative (ethico-legal) frameworks. Examining the broader context serves to highlight problems that have a cross-disciplinary scope and identify solutions that may benefit from a holistic consideration.
- Abstract(参考訳): 個人用自動運転車は、周囲の環境を感知し、ルートを計画し、人間のドライバーをほとんど、あるいは全く関与せずに運転できる車、トラック、自転車である。
近年の産業の目覚ましい技術的成果や、先進的な起業家による希望的な発表にもかかわらず、個人用車両が「完全」または「セミ」自律モード(自律レベル4、5)で道路循環に許可されることはなく、最終的にこのような承認を受ける程度に成熟するかどうかは不明である。
本稿では,自動運転車の商業化が遅れている問題を特定することを目的として,自動運転部門が直面する課題を総合的かつ多分野的に調査するアプローチを採用する。
レビューでは、現在の技術と研究者が考案した最も有望な解決策に関連する限界とリスクについて検討する。
この否定的な評価手法は悲観主義に動機づけられるのではなく、技術の最先端、業界の品質基準、社会の要求と期待に対する批判的な認識を高めたいという願望によるものである。
この調査は主に人工知能の知覚とナビゲーションへの応用に焦点を当てているが、文化的な態度、概念的仮定、規範的(倫理的)なフレームワークなど、関連する人間中心の側面と純粋に技術的な側面を結びつける拡大された図面を提供することも目指している。
より広い文脈を理解することは、学際的なスコープを持つ問題を強調し、全体論的考察から恩恵を受ける可能性のある解決策を特定するのに役立つ。
関連論文リスト
- Advancing Autonomous Driving Perception: Analysis of Sensor Fusion and Computer Vision Techniques [0.0]
このプロジェクトは、自動運転ロボットの理解とナビゲーション能力の向上に焦点を当てている。
既存の検出と追跡アルゴリズムを用いて、未知のマップ2Dマップへのより良いナビゲーションを実現する方法について検討する。
論文 参考訳(メタデータ) (2024-11-15T19:11:58Z) - Pedestrian motion prediction evaluation for urban autonomous driving [0.0]
我々は、従来の動き予測指標の妥当性を決定するために、提供されたオープンソースソリューションを用いて、選択した出版物を解析する。
この視点は、既存の最先端の歩行者運動予測問題の現実的なパフォーマンスを探している、自動運転やロボット工学の潜在的なエンジニアにとって価値があるだろう。
論文 参考訳(メタデータ) (2024-10-22T10:06:50Z) - Exploring the Causality of End-to-End Autonomous Driving [57.631400236930375]
本稿では,エンドツーエンド自動運転の因果関係を探究し,分析するための包括的アプローチを提案する。
私たちの研究は、エンドツーエンドの自動運転の謎を初めて明らかにし、ブラックボックスを白い箱に変えた。
論文 参考訳(メタデータ) (2024-07-09T04:56:11Z) - The RoboDrive Challenge: Drive Anytime Anywhere in Any Condition [136.32656319458158]
2024年のRoboDrive Challengeは、駆動認識技術の発展を促進するために作られた。
今年の挑戦は5つの異なるトラックで構成され、11カ国の93の機関から140の登録チームが集まった。
競争は15の最高パフォーマンスのソリューションで頂点に達した。
論文 参考訳(メタデータ) (2024-05-14T17:59:57Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
本稿では,現在のAVの状況を調べることによって,自律運転における本質的なリスクを評価する。
AVの利点と、現実のシナリオにおける潜在的なセキュリティ課題との微妙なバランスを強調した、特定のクレームを開発する。
論文 参考訳(メタデータ) (2024-05-14T09:42:21Z) - Are you a robot? Detecting Autonomous Vehicles from Behavior Analysis [6.422370188350147]
本稿では,車両が自律的かどうかを判断するために,カメラ画像と状態情報を用いてアクティブな車両を監視するフレームワークを提案する。
基本的には、自動運転車を識別するための機械学習モデルを提供する道路上で取得したデータをシェアする車両間の協力に基づいて構築される。
実験により,ビデオクリップを80%の精度で解析することにより,2つの行動の識別が可能であることが確認された。
論文 参考訳(メタデータ) (2024-03-14T17:00:29Z) - Generative AI for Unmanned Vehicle Swarms: Challenges, Applications and
Opportunities [84.00105187866806]
Generative AI(GAI)は、無人車両群におけるこれらの課題を解決する大きな可能性を提供する。
本稿では,無人車及び無人車群の概要と,その利用事例と既存課題について述べる。
そこで本研究では,無人車両群におけるGAIの適用状況と課題について,さまざまな知見と議論を加えて概説する。
論文 参考訳(メタデータ) (2024-02-28T05:46:23Z) - DME-Driver: Integrating Human Decision Logic and 3D Scene Perception in
Autonomous Driving [65.04871316921327]
本稿では,自律運転システムの性能と信頼性を高める新しい自律運転システムを提案する。
DME-Driverは、意思決定者として強力な視覚言語モデル、制御信号生成者として計画指向認識モデルを利用する。
このデータセットを利用することで、論理的思考プロセスを通じて高精度な計画精度を実現する。
論文 参考訳(メタデータ) (2024-01-08T03:06:02Z) - Open-sourced Data Ecosystem in Autonomous Driving: the Present and Future [130.87142103774752]
このレビューは、70以上のオープンソースの自動運転データセットを体系的に評価する。
高品質なデータセットの作成の基礎となる原則など、さまざまな側面に関する洞察を提供する。
また、解決を保障する科学的、技術的課題も検討している。
論文 参考訳(メタデータ) (2023-12-06T10:46:53Z) - LLM4Drive: A Survey of Large Language Models for Autonomous Driving [62.10344445241105]
大規模言語モデル(LLM)は、文脈理解、論理的推論、回答生成などの能力を示した。
本稿では,自動走行のための大規模言語モデル (LLM4AD) に関する研究ラインを体系的にレビューする。
論文 参考訳(メタデータ) (2023-11-02T07:23:33Z) - Autonomous Vehicles an overview on system, cyber security, risks,
issues, and a way forward [0.0]
この章は、自動運転車の複雑な領域を探求し、その基本的な構成要素と運用上の特性を分析します。
この調査の主な焦点は、サイバーセキュリティの領域、特に自動運転車の文脈にある。
これらの車両を潜在的な脅威から保護することを目的とした様々なリスク管理ソリューションについて、包括的な分析を行う。
論文 参考訳(メタデータ) (2023-09-25T15:19:09Z) - Data and Knowledge for Overtaking Scenarios in Autonomous Driving [0.0]
オーバーテイク・エクササイズは、運転において最も重要な行動の1つである。
文献で利用できる作業量にもかかわらず、ほんの少しの操作しか処理できない。
この研究は、この領域に寄与し、新たな合成データセットを提示する。
論文 参考訳(メタデータ) (2023-05-30T21:27:05Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
本研究の目的は、ADASおよび自動運転車のカメラおよびレーダーによる認識の現在のシナリオに関する研究を行うことである。
両センサと融合に関する概念と特徴を提示する。
本稿では、ディープラーニングに基づく検出とセグメンテーションタスクの概要と、車両の認識における主要なデータセット、メトリクス、課題、オープンな質問について説明する。
論文 参考訳(メタデータ) (2023-03-08T00:48:32Z) - The Technological Emergence of AutoML: A Survey of Performant Software
and Applications in the Context of Industry [72.10607978091492]
Automated/Autonomous Machine Learning (AutoML/AutonoML)は比較的若い分野である。
このレビューは、このトピックに関する知識に2つの主要な貢献をしている。
オープンソースと商用両方の既存のAutoMLツールについて、最新かつ包括的な調査を提供する。
論文 参考訳(メタデータ) (2022-11-08T10:42:08Z) - Challenges of engineering safe and secure highly automated vehicles [0.0]
本稿では,安全,安全,信頼性,信頼性の高い高度自動走行車(hav)を実現する上で,まだ克服すべき課題をまとめる。
havを実現する上での4つの課題は、継続的デプロイ後のシステム改善の実現、不確実性と不完全な情報の処理、機械学習コンポーネントによるhavの検証、予測である。
論文 参考訳(メタデータ) (2021-03-05T08:52:31Z) - Moral and Social Ramifications of Autonomous Vehicles [0.0]
我々は、AV技術がプロやセミプロのドライバーの生活や生活にどのような影響を及ぼすかという、特定の懸念に焦点を当てる。
ドライバーが専門家とどう違うかを示すことで、私たちの研究はAIや他の先進的な技術にAVを超えて影響を受けています。
論文 参考訳(メタデータ) (2021-01-28T01:46:52Z) - Explainability of vision-based autonomous driving systems: Review and
challenges [33.720369945541805]
説明可能性の必要性は運転で強く、安全クリティカルなアプリケーションです。
この調査は、コンピュータビジョン、ディープラーニング、自動運転、説明可能なAI(X-AI)など、いくつかの研究分野から貢献を集めています。
論文 参考訳(メタデータ) (2021-01-13T19:09:38Z) - Sense-Assess-eXplain (SAX): Building Trust in Autonomous Vehicles in
Challenging Real-World Driving Scenarios [24.459719212176637]
我々は,自律システムの大規模展開の保証と規制に対する重要な障壁を克服するために,基本的な技術的課題に対処する。
従来のセンサだけでなく、従来のセンサーを使って環境をしっかりと理解し、解釈できるロボットを構築する方法について紹介する。
珍しい、稀で、非常に価値のあるデータセットの収集において、現在進行中の作業について説明する。
論文 参考訳(メタデータ) (2020-05-05T09:54:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。